FULL STACKDEVELOPMENT
[R22A0516] LECTURE NOTES

B.TECH III YEAR - I SEM(R22)
(2024-25)

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC — ‘A’ Grade - 1ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad —500100, Telangana State, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission
®To achieve and impart holistic technical education using the best of infrastructure,
outstanding technical and teaching expertise to establish the students into competent
and confident engineers.
® Evolving the center of excellence through creative and innovative teaching learning
practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1-ANALYTICALSKILLS

® To facilitate the graduates with the ability to visualize, gather information, articulate, analyze,
solve complex problems, and make decisions. These are essential to address the challenges of
complex and computation intensive problems increasing their productivity.
PEO2-TECHNICALSKILLS
® Tofacilitatethegraduateswiththetechnicalskillsthatpreparethemforimmediateemploymentandpurs
ue certification providing a deeper understanding of the technology in advanced areas of
computer science and related fields, thus encouraging pursuing higher education and research
based on their interest.
PEO3-SOFTSKILLS

® To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals,
showing self confidence by communicating effectively, having a positive attitude, get
involved in team-work, being a leader, managing their career and their life.
PEO4-PROFESSIONALETHICS
® To facilitate the graduates with the knowledge of professional and ethical responsibilities by
paying attention to grooming, being conservative with style, following dress codes, safety

codes, and adapting them to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B.Tech Computer Science and Engineering, the graduates
will have the following Program Specific Outcomes:

1.FundamentalsandcriticalknowledgeoftheComputerSystem: -
AbletoUnderstandtheworkingprinciples of the computer System and its components, Apply
the knowledge to build, asses, and analyze the software and hardware aspects of it.

2.The comprehensive and Applicative knowledge of Software Development. Comprehensive
skills of Programming Languages, Software process models, methodologies, and able to plan,
develop, test, analyze, and manage the software and hardware intensive systems in
heterogeneous platforms individually or working in teams.

3.Applications of Computing Domain & Research: Able to use the professional, managerial,
interdisciplinary skill set, and domain specific tools in development processes, identify their
search gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals,andanengineeringspecializationtothesolutionofcomplexengineeringproblems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions wusing first principles of
mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex
engineeringproblemsanddesignsystemcomponentsorprocessesthatmeetthespecifiedneedswit
happropriateconsideration for thepublic health and safety, and the
cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF CSE

INDEX
SNO UNIT TOPIC PAGE
NO
1 [Web development Basics - HTML 2
2 | Web servers 35
3 | UNIX CLI Version control - Git & Github 36
4 | HTML, CSS 40
5 I Javascript basics OOPS Aspects of JavaScript Memory 60
usage and Functions in JS
6 Il AJAX for data exchange with server jQuery 69
Framework jQuery events
7 Il JSON data format. 80
8 11 importance of Angular, Understanding Angular, 83
creating a Basic Angular Application,
9 i Angular Components, ExpressioN 90
10 11 Data Binding, Built-in Directives, Custom Directives, 105
Implementing Angular Services in Web Applications.
11 11 Need of React, Simple React Structure, The Virtual 107
DOM, React Components, Introducing React
Components, Creating Components in React, Data and
Data Flow in React
12 I Rendering and Life Cycle Methods in React, Working 125
with forms in React, integrating third party libraries,
Routing in React.
13 \Y Getting Started with Node.js, Using Events, Listeners 129
14 v Callbacks in Node.js, Handling Data I/O in Node.js 130
15 v Accessing the File System from Node.js 135
16 v Implementing Socket Services in Node.js. 146
17 v Understanding NoSQL and MongoDB, Getting Started 149
with MongoDB
18 v Getting Started with MongoDB and Node.js, 153
Manipulating MongoDB Documents from Node.js
19 v Accessing MongoDB from Node.js, Using Mongoose 154
for Structured Schema and Validation
20 \Y Advanced MongoDB Concepts. 167

Department of CSE

(R20A0516) FULL STACK DEVELOPMENT

COURSE OBJECTIVES:

1.

To become knowledgeable about the most recent web development technologies.

Idea for creating two tier and three tier architectural web applications.

Design and Analyze real time web applications. and Constructing suitable client and server side applications.

To learn core concept of both front end and back end programming.

Students will become familiar to implement fast, efficient, interactive and scalable web applications using run time environment
provided by the full stack components

UNIT - |

Web Development Basics: Web development Basics - HTML & Web servers Shell - UNIX CLI
Version control - Git & Github HTML, CSS

UNIT - 11

Frontend Development: Javascript basics OOPS Aspects of JavaScript Memory usage and Functions
in JS AJAX for data exchange with server jQuery Framework jQuery events, Ul components etc.
JSON data format.

UNIT - 111

Angular: importance of Angular, Understanding Angular, creating a Basic Angular Application,
Angular Components, Expressions, Data Binding, Built-in Directives, Custom Directives,
Implementing Angular Services in Web Applications.

React:

Need of React, Simple React Structure, The Virtual DOM, React Components, Introducing React
Components, Creating Components in React, Data and Data Flow in React, Rendering and Life Cycle
Methods in React, Working with forms in React, integrating third party libraries, Routing in React.
UNIT - IV

Node js: Getting Started with Node.js, Using Events, Listeners, Timers, and Callbacks in Node.js,
Handling Data I/O in Node.js, Accessing the File System from Node.js, Implementing Socket Services
in Node.js.

UNIT -V

MongoDB:

Understanding NoSQL and MongoDB, Getting Started with MongoDB, Getting Started with
MongoDB and Node.js, Manipulating MongoDB Documents from Node.js, Accessing MongoDB
from Node.js, Using Mongoose for Structured Schema and Validation, Advanced MongoDB
Concepts.

TEXT BOOKS:

1. Web Design with HTML, CSS, JavaScript and JQuery Set Book by Jon Duckett Professional JavaScript for Web Developeff
Book by Nicholas C. Zakas. (Unit-1,11).

2. ProGit, 2nd Edition, Apress publication by Scott Chacon and Straub. (Unit I).

3. Brad Dayley, Brendan Dayley, Caleb Dayley., Node.js, MongoDB and Angular Web Development, 2nd Edition, Addison-
Wesley, 2019. (Unit-111, Unit-1V, Unit-V).

4. Mark Tielens Thomas, React in Action, 1st Edition, Manning Publications. (Unit-I11).

REFERENCE BOOKS:

1. Full-Stack JavaScript Development by Eric Bush.

2. Mastering Full Stack React Web Development Paperback — April 28, 2017 by Tomasz Dyl ,
Kamil Przeorski , Maciej Czarnecki

COURSE OUTCOMES:
Understand Full stack components for developing web application.
Apply packages of NodeJS to work with Data, Files, Http Requests and Responses.
Use MongoDB data base for storing and processing huge data and connects with NodeJS application.
Design faster and effective single page applications using Angular.
Create interactive user interfaces with react components

Page

Department of CSE

HTML Document Structure

A typical HTML document will have the following structure:

Document declaration tag
<html>
<head>
Document header related tags

</head>

<body>
Document body related tags
</body>
</html>

We will study all the header and body tags in subsequent chapters, but for now
let's see what is document declaration tag.

The <IDOCTYPE> Declaration

The <IDOCTYPE> declaration tag is used by the web browser to understand the
version of the HTML used in the document. Current version of HTML is 5 and it
makes use of the following declaration:

<!DOCTYPE html>

There are many other declaration types which can be used in HTML document
depending on what version of HTML is being used. We will see more details on
this while discussing <!DOCTYPE...> tag along with other HTML tags.

age

Department of CSE

Heading Tags

Any document starts with a heading. You can use different sizes for your headings. HTML
also has six levels of headings, which use the elements <h1>, <h2>, <h3>, <h4>,
<h5>, and <h6>. While displaying any heading, browser adds one line before and one line
after that heading.

Example

<!DOCTYPE html>

<html>

<head>

<title>Heading Example</title>
</head>

<body>

<h1>This is heading 1</h1>
<h2>This is heading 2</h2>
<h3>This is heading 3</h3>
<h4>This is heading 4</h4>
<h5>This is heading 5</h5>
<h6>This is heading 6</h6>
</body>

</html>

This will produce the following result:
This is heading 1
This is heading 2
This is heading 3
This is heading 4
This is heading 5

This bs hanmadingg &

Paragraph Tag

The <p> tag offers a way to structure your text into different paragraphs. Each paragraph
of text should go in between an opening <p> and a closing </p> tag as shown below in the
example:

Page

Department of CSE

Example

<!DOCTYPE html>

<html>

<head>

<title>Paragraph Example</title>

</head>

<body>

<p>Here is a first paragraph of text.</p>
<p>Here is a second paragraph of text.</p>
<p>Here is a third paragraph of text.</p>
</body>

</html>

This will produce the following result:

Here is a first paragraph of text.
Here is a second paragraph of text.

Here is a third paragraph of text.

Line Break Tag

Whenever you use the
 element, anything following it starts from the next line. This
tag is an example of an empty element, where you do not need opening and closing tags,
as there is nothing to go in between them.

The
 tag has a space between the characters br and the forward slash. If you omit this
space, older browsers will have trouble rendering the line break, while if you miss the forward
slash character and just use
 it is not valid in XHTML.

Example

<!DOCTYPE html>

<html>

<head>

<title>Line Break Example</title>

</head>

<body>

Department of CSE

<p>Hello

You delivered your assignment on time.

Thanks

Mahnaz</p>
</body>
</html>
This will produce the following result:
Hello
You delivered your assignment on time.

Thanks
Mahnaz

Centering Content

You can use <center> tag to put any content in the center of the page or any table cell.

Example

<!DOCTYPE html>
<html>

<head>

<title>Centring Content Example</title>
</head>

<body>

<p>This text is not in the center.</p>
<center>

<p>This text is in the center.</p>
</center>

</body>

</html>

This will produce the following result:

This text is not in the center.

This text is in the center.

age

Department of CSE

Horizontal Lines

Horizontal lines are used to visually break-up sections of a document. The <hr> tag creates
a line from the current position in the document to the right margin and breaks the line
accordingly.

For example, you may want to give a line between two paragraphs as in the given example
below:

Example

<IDOCTYPE html>

<html>

<head>

<title>Horizontal Line Example</title>

</head>

<body>

<p>This is paragraph one and should be on top</p>
<hr />

<p>This is paragraph two and should be at bottom</p>
</body>

</html>

This will produce the following result:

This is paragraph one and should be on top

This is paragraph two and should be at bottom

Again <hr /> tag is an example of the empty element, where you do not need opening and
closing tags, as there is nothing to go in between them.

The <hr /> element has a space between the characters hr and the forward slash. If you
omit this space, older browsers will have trouble rendering the horizontal line, while if you
miss the forward slash character and just use <hr> it is not valid in XHTML

Preserve Formatting

Sometimes, you want your text to follow the exact format of how it is written in the HTML
document. In these cases, you can use the preformatted tag <pre>.

Any text between the opening <pre> tag and the closing </pre> tag will preserve the
formatting of the source document.

Department of CSE

Example
<IDOCTYPE html>

<html>

<head>

<title>Preserve Formatting Example</title>

</head>

<body>

<pre>

function testFunction(strText){
alert (strText)

}

</pre>

</body>

</html>

This will produce the following result:

function testFunction(strText){

alert (strText)

Try using the same code without keeping it inside <pre>...</pre> tags

Nonbreaking Spaces

Suppose you want to use the phrase "12 Angry Men." Here, you would not want a browser to
split the "12, Angry" and "Men" across two lines:

An example of this technique appears in the movie "12 Angry Men."

In cases, where you do not want the client browser to break text, you should use a
nonbreaking space entity instead of a normal space. For example, when coding the
"12 Angry Men" in a paragraph, you should use something similar to the following code:

Example

<!DOCTYPE html>
<html>

Department of CSE

<head>

<title>Nonbreaking Spaces Example</title>

</head>

<body>

<p>An example of this technique appears in the movie "12 Angry Men."</p>
</body>

</html>

3. HTML — ELEMENTS

An HTML element is defined by a starting tag. If the element contains other content, it ends
with a closing tag, where the element name is preceded by a forward slash as shown below
with few tags:

Start Tag Content End Tag
<p> This is paragraph content. </p>
<hl> This is heading content. </h1l>
<div> This is division content. </div>

So here <p>....</p> is an HTML element, <h1>...</h1> is another HTML element. There
are some HTML elements which don't need to be closed, such as <img.../>, <hr /> and

 elements. These are known as void elements.

HTML documents consists of a tree of these elements and they specify how HTML documents
should be built, and what kind of content should be placed in what part of an HTML document.

HTML Tag vs. Element

An HTML element is defined by a starting tag. If the element contains other content, it ends
with a closing tag.

Full Stack Development 8|Page

Department of CSE

For example, <p> is starting tag of a paragraph and </p> is closing tag of the same
paragraph but <p>This is paragraph</p> is a paragraph element.

Nested HTML Elements

It is very much allowed to keep one HTML element inside another HTML element:

Example
<IDOCTYPE html>

<html>
<head>

<title>Nested Elements Example</title>
</head>

<body>

<h1>This is <i>italic</i> heading</h1>
<p>This is <u>underlined</u> paragraph</p>
</body>

</html>

This will display the following result:

This is italic heading

This is underlined paragraph

Full Stack Development 9|Page

Department of CSE

4. HTML — ATTRIBUTES

We have seen few HTML tags and their usage like heading tags <h1>, <h2>, paragraph tag
<p> and other tags. We used them so far in their simplest form, but most of the HTML tags
can also have attributes, which are extra bits of information.

An attribute is used to define the characteristics of an HTML element and is placed inside the
element's opening tag. All attributes are made up of two parts: a name and a value:

e The name is the property you want to set. For example, the paragraph <p> element in
the example carries an attribute whose name is align, which you can use to indicate
the alignment of paragraph on the page.

The value is what you want the value of the property to be set and always put within
quotations. The below example shows three possible values of align attribute: left,
center and right.

Attribute names and attribute values are case-insensitive. However, the World Wide Web
Consortium (W3C) recommends lowercase attributes/attribute values in their HTML 4
recommendation.

Example
<!DOCTYPE html>

<html>

<head>

<title>Align Attribute Example</title>
</head>

<body>

<p align="left">This is left aligned</p>

<p align="center">This is center aligned</p>
<p align="right">This is right aligned</p>
</body>

</html>

This will display the following result:

This is left aligned

This is center aligned

This is right aligned

Full Stack Development

Page

Department of CSE

Core Attributes

The four core attributes that can be used on the majority of HTML elements (although not all)
are:

Id
Title
Class
Style

The Id Attribute

The id attribute of an HTML tag can be used to uniquely identify any element within an HTML
page. There are two primary reasons that you might want to use an id attribute on anelement:

e If an element carries an id attribute as a unique identifier, it is possible to identify
just that element and its content.

If you have two elements of the same name within a Web page (or style sheet), you
can use the id attribute to distinguish between elements that have the same name.

We will discuss style sheet in separate tutorial. For now, let's use the id attribute to
distinguish between two paragraph elements as shown below.

Example

{de"html"sThi 1ai ¢ s HIML</

<p id="css">This para explains what is Cascading Style Sheet</p>

The title Attribute

The title attribute gives a suggested title for the element. They syntax for the title attribute
is similar as explained for id attribute:

The behavior of this attribute will depend upon the element that carries it, although it is often
displayed as a tooltip when cursor comes over the element or while the element is loading.

Example

<!DOCTYPE html>
<html>

<head>

<title>The title Attribute Example</title>

ack Developmen

Page

Department of CSE

</head>
<body>
<h3 title="Hello HTML!">Titled Heading Tag Example</h3>
</body>
</html>

This will produce the following result:

Titled Heading Tag Example

Now try to bring your cursor over "Titled Heading Tag Example" and you will see that whatever
title you used in your code is coming out as a tooltip of the cursor.

The class Attribute

The class attribute is used to associate an element with a style sheet, and specifies the class
of element. You will learn more about the use of the class attribute when you will learn
Cascading Style Sheet (CSS). So for now you can avoid it.

The value of the attribute may also be a space-separated list of class nhames. For example:

class="classNamel className2 className3"

The style Attribute

The style attribute allows you to specify Cascading Style Sheet (CSS) rules within the element.

<IDOCTYPE html>

<html>

<head>

<title>The style Attribute</title>

</head>

<body>

<p style="font-family:arial; color:#FF0@000;">Some text...</p>
</body>

</html>

This will produce the following result:

Some text...

ull Stack Development

Page

Department of CSE

At this point of time, we are not learning CSS, so just let's proceed without bothering much
about CSS. Here, you need to understand what are HTML attributes and how they can be used
while formatting content.

Internationalization Attributes

There are three internationalization attributes, which are available for most (although notall)
XHTML elements.

o dir
e lang
e xml:lang

The dir Attribute

The dir attribute allows you to indicate to the browser about the direction in which the text
should flow. The dir attribute can take one of two values, as you can see in the table that
follows:

Value Meaning
Itr Left to right (the default value)

rtl Right to left (for languages such as Hebrew or Arabic that are read right to left)

ack Developmen

Page

Department of CSE

Example

<!IDOCTYPE html>

<html dir="rtl1">

<head>

<title>Display Directions</title>

</head>

<body>

This is how IE 5 renders right-to-left directed text.
</body>

</html>

This will produce the following result:
This is how IE 5 renders right-to-left directed text.

When dir attribute is used within the <html> tag, it determines how text will be presented
within the entire document. When used within another tag, it controls the text's direction for
just the content of that tag.

The lang Attribute

The lang attribute allows you to indicate the main language used in a document, but this
attribute was kept in HTML only for backwards compatibility with earlier versions of HTML.
This attribute has been replaced by the xml:lang attribute in new XHTML documents.

The values of the /lang attribute are ISO-639 standard two-character language codes. Check

HTML Language Codes: 1ISO 639 for a complete list of language codes.

Example

<!DOCTYPE html>

<html lang="en">

<head>

<title>English Language Page</title>
</head>

<body>

This page is using English Language
</body>

</html>

Full Stack Development

Page

http://www.tutorialspoint.com/html/language_iso_codes.htm

Department of CSE MRCET

The xml:lang Attribute

The xml:lang attribute is the XHTML replacement for the /ang attribute. The value of
thexml:lang attribute should be an ISO-639 country code as mentioned in previous section.

Generic Attributes

Here's a table of some other attributes that are readily usable with many of the HTML tags.

Attribute Options Function
align right, left, center Horizontally aligns tags

valign top, middle, bottom Vertically aligns tags within an HTML
element.

bgcolor numeric, hexidecimal, RGB Places a background color behind an

values element

background URL Places a background image behind an
element

id User Defined Names an element for use with Cascading
Style Sheets.

class User Defined Classifies an element for use with Cascading
Style Sheets.

width Numeric Value Specifies the width of tables, images, or
table cells.

height Numeric Value Specifies the height of tables, images, or
table cells.

title User Defined "Pop-up" title of the elements.

We will see related examples as we will proceed to study other HTML tags. For a complete list
of HTML Tags and related attributes please check reference to HTML Tags List.

If you use a word processor, you must be familiar with the ability to make text bold, italicized,
or underlined; these are just three of the ten options available to indicate how text can appear
in HTML and XHTML.

Full Stack Development 15 |
Page

http://www.tutorialspoint.com/html/html_tags_ref.htm

Department of CSE

Bold Text

Anything that appears within ... element, is displayed in bold as shown below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Bold Text Example</title>

</head>

<body>

<p>The following word uses a bold typeface.</p>
</body>

</html>

This will produce the following result:

The following word uses a bold typeface.

Italic Text

Anything that appears within <i>...</i> element is displayed in italicized as shown below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Italic Text Example</title>

</head>
<body>

<p>The following word uses a <i>italicized</i> typeface.</p>
</body>
</html>

This will produce the following result:

The following word uses an italicized typeface.

Full Stack Development

Page

Department of CSE

Underlined Text

Anything that appears within <u>...</u> element, is displayed with underline as shown
below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Underlined Text Example</title>

</head>

<body>

<p>The following word uses a <u>underlined</u> typeface.</p>
</body>

</html>

This will produce the following result:

The following word uses an underlined typeface.

Strike Text

Anything that appears within <strike>...</strike> element is displayed with
strikethrough, which is a thin line through the text as shown below:

Example

<!DOCTYPE html>
<html>

<head>
<title>Strike Text Example</title>

</head>
<body>
<p>The following word uses a <strike>strikethrough</strike> typeface.</p>
</body>

</html>
This will produce the following result:

The following word uses a strikethreugh typeface.

Full Stack Development

Page

Department of CSE

Monospaced Font

The content of a <tt>...</tt> element is written in monospaced font. Most of the fonts are
known as variable-width fonts because different letters are of different widths (for example,
the letter 'm' is wider than the letter 'i'). In a monospaced font, however, each letter has the
same width.

Example

<!DOCTYPE html>

<html>

<head>

<title>Monospaced Font Example</title>

</head>

<body>

<p>The following word uses a <tt>monospaced</tt> typeface.</p>
</body>

</html>

This will produce the following result:

The following word uses a monospaced typeface.

Superscript Text

The content of a ^{...} element is written in superscript; the font size used is the
same size as the characters surrounding it but is displayed half a character's height above the
other characters.

Example

<!DOCTYPE html>

<html>

<head>

<title>Superscript Text Example</title>

</head>

<body>

<p>The following word uses a ^{superscript} typeface.</p>
</body>

</html>

ack Developmen

Page

Department of CSE

This will produce the following result:

superscript

The following word uses a typeface.

Subscript Text

The content of a _{...} element is written in subscript; the font size used is the
same as the characters surrounding it, but is displayed half a character's height beneath the
other characters.

Example

<!DOCTYPE html>

<html>

<head>

<title>Subscript Text Example</title>

</head>

<body>

<p>The following word uses a _{subscript} typeface.</p>
</body>

</html>

This will produce the following result:

The following word uses a subscript typeface.

Inserted Text

Anything that appears within <ins>...</ins> element is displayed as inserted text.

Example

<IDOCTYPE html>

<html>

<head>

<title>Inserted Text Example</title>

</head>

<body>

<p>I want to drink cola <ins>wine</ins></p>
</body>

</html>

Page

Department of CSE

Full Stack Development

Page

Department of CSE

This will produce the following result:

I want to drink esla wine

Deleted Text

Anything that appears within ... element, is displayed as deleted text.

Example

<!DOCTYPE html>

<html>

<head>

<title>Deleted Text Example</title>

</head>

<body>

<p>I want to drink cola <ins>wine</ins></p>
</body>

</html>

This will produce the following result:

I want to drink esla wine

Larger Text

The content of the <big>...</big> element is displayed one font size larger than the rest
of the text surrounding it as shown below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Larger Text Example</title>

</head>

<body>

<p>The following word uses a <big>big</big> typeface.</p>
</body>

Full Stack Development

Page

Department of CSE

</html>

This will produce the following result:

The following word uses a big typeface.

Smaller Text

The content of the <small>...</small> element is displayed one font size smaller than
the rest of the text surrounding it as shown below:

Example
<IDOCTYPE html>

<html>

<head>

<title>Smaller Text Example</title>

</head>

<body>

<p>The following word uses a <small>small</small> typeface.</p>

</body>

</html>
This will produce the following result:

The following word uses a small typeface.

Grouping Content

The <div> and elements allow you to group together several elements to create
sections or subsections of a page.

For example, you might want to put all of the footnotes on a page within a <div> element to
indicate that all of the elements within that <div> element relate to the footnotes. You might
then attach a style to this <div> element so that they appear using a special set of style rules.

Example

<!DOCTYPE html>
<html>

Full Stack Development

Page

Department of CSE MRCET

<head>

<title>Div Tag Example</title>

</head>

<body>

<div id="menu" align="middle" >

HOME |

CONTACT |

ABOUT </div>

<div id="content" align="left" bgcolor="white">
<h5>Content Articles</h5>

<p>Actual content goes here. ...</p>

</div>

</body>

</html>

This will produce the following result:

HOME | CONTACT | ABOUT

Actual content goes here.....

The element, on the other hand, can be used to group inline elements only. So, if
you have a part of a sentence or paragraph which you want to group together, you could use
the element as follows

Example

<!DOCTYPE html>

<html>

<head>

<title>Span Tag Example</title>
</head>

<body>

<p>This is the example of span tag and the div tag alongwith CSS</p>

http://localhost/index.htm
http://localhost/index.htm
http://localhost/about/index.htm

Department of CSE

</body>
</html>

This will produce the following result:
This is the example of span tag and the div tag along with CSS

These tags are commonly used with CSS to allow you to attach a style to a section of a page.

6. HTML—PHRASE TAGS

The phrase tags have been desicolgned for specific purposes, though they are displayed in a
similar way as other basic tags like , <i>, <pre>, and <tt>, you have seen in previous
chapter. This chapter will take you through all the important phrase tags, so let's start seeing
them one by one.

Emphasized Text

Anything that appears within ... element is displayed as emphasized text.

Example

<!DOCTYPE html>

<html>

<head>

<title>Emphasized Text Example</title>

</head>

<body>

<p>The following word uses a emphasized typeface.</p>
</body>

</html>

This will produce the following result:

The following word uses an emphasized typeface.

Marked Text

Anything that appears with-in <mark>...</mark> element, is displayed as marked with
yellow ink.

Example

ack Developmen

Page

Department of CSE

<IDOCTYPE html>

<html>

<head>

<title>Marked Text Example</title>

</head>

<body>

<p>The following word has been <mark>marked</mark> with yellow</p>
</body>

</html>

This will produce the following result:

The following word has been marked with yellow

Strong Text

Anything that appears within ... element is displayed as important text.

Example

<IDOCTYPE html>

<html>

<head>

<title>Strong Text Example</title>

</head>

<body>

<p>The following word uses a strong typeface.</p>
</body>

</html>

This will produce the following result:

The following word uses a strong typeface.

Text Abbreviation

You can abbreviate a text by putting it inside opening <abbr> and closing </abbr> tags. If
present, the title attribute must contain this full description and nothing else.

Example

<!DOCTYPE html>

<html>

<head>
<title>Text Abbreviation</title>

</head>

ull Stack Development

Page

Department of CSE

<body>
<p>My best friend's name is <abbr title="Abhishek">Abhy</abbr>.</p>
</body>
</html>

This will produce the following result:

My best friend's name is Abhy.

Acronym Element

The <acronym> element allows you to indicate that the text between <acronym> and
</acronym> tags is an acronym.

At present, the major browsers do not change the appearance of the content of the
<acronym> element.

Example

<IDOCTYPE html>

<html>

<head>

<title>Acronym Example</title>

</head>

<body>

<p>This chapter covers marking up text in <acronym>XHTML</acronym>.</p>
</body>

</html>

This will produce the following result:

This chapter covers marking up text in XHTML.

Full Stack Development

Page

Department of CSE

Text Direction

The <bdo>...</bdo> element stands for Bi-Directional Override and it is used to override
the current text direction.

Example

<!DOCTYPE html>

<html>

<head>

<title>Text Direction Example</title>

</head>

<body>

<p>This text will go left to right.</p>

<p><bdo dir="rtl">This text will go right to left.</bdo></p>
</body>

</html>

This will produce the following result:

This text will go left to right.

This text will go right to left.

Special Terms

The <dfn>...</dfn> element (or HTML Definition Element) allows you to specify that you are
introducing a special term. It's usage is similar to italic words in the midst of a paragraph.

Typically, you would use the <dfn> element the first time you introduce a key term. Most
recent browsers render the content of a <dfn> element in an italic font.

Example

<!DOCTYPE html>

<html>

<head>

<title>Special Terms Example</title>

</head>

<body>

<p>The following word is a <dfn>special</dfn> term.</p>

</body>

Page

Department of CSE

</html>

This will produce the following result:

The following word is a special term.

Quoting Text

When you want to quote a passage from another source, you should putitin
between<blockquote>...</blockquote> tags.

Text inside a <blockquote> element is usually indented from the left and right edges of the
surrounding text, and sometimes uses an italicized font.

Example

<!DOCTYPE html>

<html>

<head>

<title>Blockquote Example</title>

</head>

<body>

<p>The following description of XHTML is taken from the W3C Web site:</p>

<blockquote>XHTML 1.0 is the W3C's first Recommendation for XHTML, following on
from earlier work on HTML 4.01, HTML 4.0, HTML 3.2 and HTML 2.0.</blockquote>
</body>

</html>

This will produce the following result:

The following description of XHTML is taken from the W3C Web site:

XHTML 1.0 is the W3C's first Recommendation for XHTML, following on from earlier
work on HTML 4.01, HTML 4.0, HTML 3.2 and HTML 2.@.

Short Quotations

The <g>...</q> element is used when you want to add a double quote within a sentence.

Example

<!DOCTYPE html>
<html>

<head>

ull Stack Development

Page

Department of CSE

<title>Double Quote Example</title>

</head>

<body>

<p>Amit is in Spain, <g>I think I am wrong</q>.</p>
</body>

</html>

This will produce the following result:

Amit is in Spain, I think I am wrong.

Text Citations

If you are quoting a text, you can indicate the source placing it between an opening
<cite>tag and closing </cite> tag

As you would expect in a print publication, the content of the <cite> element is rendered in
italicized text by default.

Example

<IDOCTYPE html>

<html>

<head>

<title>Citations Example</title>

</head>

<body>

<p>This HTML tutorial is derived from <cite>W3 Standard for HTML</cite>.</p>
</body>

</html>

This will produce the following result:

This HTML tutorial is derived from W3 Standard for HTML.

Computer Code

Any programming code to appear on a Web page should be placed inside
<code>...</code>tags. Usually the content of the <code> element is presented in a
monospaced font, just like the code in most programming books.

u ack Developmen

Page

Department of CSE

Example
<IDOCTYPE html>

<html>

<head>

<title>Computer Code Example</title>

</head>

<body>

<p>Regular text. <code>This is code.</code> Regular text.</p>
</body>

</html>

This will produce the following result:

Regular text. This is code. Regular text.

Keyboard Text

When you are talking about computers, if you want to tell a reader to enter some text, you
can use the <kbd>...</kbd> element to indicate what should be typed in, as in this
example.

Example
<IDOCTYPE html>

<html>

<head>

<title>Keyboard Text Example</title>

</head>

<body>

<p>Regular text. <kbd>This is inside kbd element</kbd> Regular text.</p>
</body>

</html>

This will produce the following result:

Regular text. This is inside kbd element Regular text.

Programming Variables

u ack Developmen

Page

Department of CSE

This element is usually used in conjunction with the <pre> and <code> elements to
indicate that the content of that element is a variable.

Example

<!DOCTYPE html>

<html>

<head>

<title>Variable Text Example</title>

</head>

<body>
<p><code>document.write("<var>user-name</var>")</code></p>
</body>

</html>

This will produce the following result:

document.write ("user—-name")

Program Output

The <samp>...</samp> element indicates sample output from a program, and script etc.
Again, it is mainly used when documenting programming or coding concepts.

Example

<!DOCTYPE html>

<html>

<head>

<title>Program Output Example</title>

</head>

<body>

<p>Result produced by the program is <samp>Hello World!</samp></p>
</body>

</html>

This will produce the following result:

Result produced by the program is Hello World!

Address Text

The <address>...</address> element is used to contain any address.

ack Developmen

Page

Department of CSE

Example

<!DOCTYPE html>

<html>

<head>

<title>Address Example</title>

</head>

<body>

<address>388A, Road No 22, Jubilee Hills - Hyderabad</address>
</body>

</html>

This will produce the following result:

388A, Road No 22, Jubilee Hills - Hyderabad

/. HTML—=META TAGS

HTML lets you specify metadata - additional important information about a document in a
variety of ways. The META elements can be used to include name/value pairs describing
properties of the HTML document, such as author, expiry date, a list of keywords, document
author etc.

The <meta> tag is used to provide such additional information. This tag is an empty element
and so does not have a closing tag but it carries information within its attributes.

You can include one or more meta tags in your document based on what information you want
to keep in your document but in general, meta tags do not impact physical appearanceof the
document so from appearance point of view, it does not matter if you include them ornot.

Adding Meta Tags to Your Documents

document which is represented by <head> and </head> tags. A meta tag can have
following attributes in addition to core attributes:

Attribute Description

Page

Department of CSE

Name for the property. Can be anything. Examples include, keywords,
description, author, revised, generator etc.

content Specifies the property's value.

scheme Specifies a scheme to interpret the property's value (as declared in the
content attribute).

http- Used for http response message headers. For example, http-equiv can be
equiv used to refresh the page or to set a cookie. Values include content-type,
expires, refresh and set-cookie.

Specifying Keywords

You can use <meta> tag to specify important keywords related to the document and later
these keywords are used by the search engines while indexing your webpage for searching
purpose.

Example

Following is an example, where we are adding HTML, Meta Tags, Metadata as important
keywords about the document.

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />
</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

This will produce the following result:

Hello HTML5!

Document Description

ack Developmen

Page

Department of CSE

You can use <meta> tag to give a short description about the document. This again can be
used by various search engines while indexing your webpage for searching purpose.

Example

<IDOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />
<meta name="description" content="Learning about Meta Tags." />
</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

Document Revision Date

You can use <meta> tag to give information about when last time the document was updated.
This information can be used by various web browsers while refreshing your webpage.

Example

<IDOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />
<meta name="description" content="Learning about Meta Tags." />
<meta name="revised" content="Tutorialspoint, 3/7/2014" />
</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

Department of CSE

Document Refreshing

A <meta> tag can be used to specify a duration after which your web page will keep
refreshing automatically.
Example

If you want your page keep refreshing after every 5 seconds then use the following syntax.
<!DOCTYPE html>

<html>
<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />
<meta name="description" content="Learning about Meta Tags." />
<meta name="revised" content="Tutorialspoint, 3/7/2014" />
<meta http-equiv="refresh" content="5" />

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

Page Redirection

You can use <meta> tag to redirect your page to any other webpage. You can also specify a
duration if you want to redirect the page after a certain number of seconds.

Example

Following is an example of redirecting current page to another page after 5 seconds. If you
want to redirect page immediately then do not specify content attribute.

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />

<meta name="description" content="Learning about Meta Tags." />

<meta name="revised" content="Tutorialspoint, 3/7/2014" />

<meta http-equiv="refresh" content="5; url=http://www.tutorialspoint.com"
</head>

<body>

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/

Department of CSE

<p>Hello HTML5!</p>
</body>
</html>

WEB SERVER

A web server is a computer that stores web server software and a website's component files (for
example, HTML documents, images, CSS stylesheets, and JavaScript files). A web server
connects to the Internet and supports physical data interchange with other devices connected to the
web.

A web server includes several parts that control how web users access hosted files. At a minimum,
this is an HTTP server. An HTTP server is software that understands URLs (web addresses) and
HTTP (the protocol your browser uses to view webpages). An HTTP server can be accessed
through the domain names of the websites it stores, and it delivers the content of these hosted
websites to the end user's device.

At the most basic level, whenever a browser needs a file that is hosted on a web server, the browser
requests the file via HTTP. When the request reaches the correct (hardware) web server, the
(software) HTTP server accepts the request, finds the requested document, and sends it back to the
browser, also through HTTP. (If the server doesn't find the requested document, it returnsa 404
response instead.)

Basic representation of a client/server connection through HTTP
To publish a website, you need either a static or a dynamic web server.

A static web server, or stack, consists of a computer (hardware) with an HTTP server (software).
We call it "'static" because the server sends its hosted files as-is to your browser.

A dynamic web server consists of a static web server plus extra software, most commonly an
application server and a database. We call it "dynamic" because the application server updates the
hosted files before sending content to your browser via the HTTP server.

For example, to produce the final webpages you see in the browser, the application server might
fill an HTML template with content from a database. Sites like MDN or Wikipedia have thousands
of webpages. Typically, these kinds of sites are composed of only a few HTML templates and a
giant database, rather than thousands of static HTML documents. This setup makes it easier to
maintain and deliver the content.

ack Developmen

Department of CSE

Git & Github
What is Git?

Git is a popular version control system. It was created by Linus Torvalds in
2005, and has been maintained by Junio Hamano since then.

It is used for:

» Tracking code changes
« Tracking who made changes
o Coding collaboration

What does Git do?

Manage projects with Repositories

Clone a project to work on a local copy

Control and track changes with Staging and Committing

Branch and Merge to allow for work on different parts and versions of a
project

Pull the latest version of the project to a local copy

Push local updates to the main project

Working with Git

Initialize Git on a folder, making it a Repository

Git now creates a hidden folder to keep track of changes in that folder
When a file is changed, added or deleted, it is considered modified
You select the modified files you want to Stage

The Staged files are Committed, which prompts Git to store

a permanent snapshot of the files

Git allows you to see the full history of every commit.

You can revert back to any previous commit.

Git does not store a separate copy of every file in every commit, but
keeps track of changes made in each commit!

Github

GitHub is a code hosting platform for version control and collaboration. It
lets you and others work together on projects from anywhere.

This tutorial teaches you GitHub essentials like repositories, branches,
commits, and pull requests. You'll create your own Hello World repository

ack Developmen
Page

Department of CSE

and learn GitHub's pull request workflow, a popular way to create and review
code.

In this quickstart guide, you will:

e Create and use a repository

e Start and manage a new branch

e Make changes to a file and push them to GitHub as commits

e Open and merge a pull request

To complete this tutorial, you need a GitHub account and Internet access. You
don't need to know how to code, use the command line, or install Git (the
version control software that GitHub is built on). If you have a question about
any of the expressions used in this guide, head on over to the glossary to
find out more about our terminology.
Creating a repository
A repository is usually used to organize a single project. Repositories can
contain folders and files, images, videos, spreadsheets, and data sets --
anything your project needs. Often, repositories include a README file, a file
with information about your project. README files are written in the plain text
Markdown language. You can use this cheat sheet to get started with
Markdown syntax. GitHub lets you add a README file at the same time you
create your new repository. GitHub also offers other common options such as
a license file, but you do not have to select any of them now.
Your hello-world repository can be a place where you store ideas, resources,
or even share and discuss things with others.

1. In the upper-right corner of any page, use the drop-down menu, and

select

i ——

New repository

2. New repository.
3. In the Repository name box, enter hello-world.
4. In the Description box, write a short description.

Full Stack Development
Page

Department of CSE

5. Select Add a README file.
6. Select whether your repository will be Public or Private.
7. Click Create repository.

Owner * Repository name *

O octocat ~ / hello-world v
Great repository names are short and memorable. Need inspiration? How about ubiquitous-system?

Description (optional)

My first repository

@) [:_I Public
[] Anyone on the internet can see this repository. You choose who can commit.

® [5 Private
You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.
Add a README file

This is where you can write a long description for your project. Learn more.

(J Add .gitignore

Choose which files not to track from a list of templates. Learn more.

(J Choose a license
A license tells others what they can and can't do with your code. Learn more.

This will set ¥ main as the default branch. Change the default name in your settings.

Create repository

Creating a branch

Branching lets you have different versions of a repository at one time.

By default, your repository has one branch named main that is considered to
be the definitive branch. You can create additional branches off of main in your
repository. You can use branches to have different versions of a projectat one
time. This is helpful when you want to add new features to a project without
changing the main source of code. The work done on different branches will
not show up on the main branch until you merge it, which we

Full Stack Developmen

Page

Department of CSE

will cover later in this guide. You can use branches to experiment and make
edits before committing them to main.
When you create a branch off the main branch, you're making a copy, or
snapshot, of main as it was at that point in time. If someone else made
changes to the main branch while you were working on your branch, you could
pull in those updates.
This diagram shows:

e« The main branch

« A new branch called feature

« The journey that feature takes before it's merged into main

@ ‘main’ branch @
Create ‘feature ’ branch from ‘main’ Merge ‘feature ' branch into ‘main’
7\ "\ £\ o o £\ Vo
- - - N - - -

Commit changes Submit Pull Request Discuss proposed changes

Have you ever saved different versions of a file? Something like:

o story.txt
e story-edit.txt
e story-edit-reviewed.txt
Branches accomplish similar goals in GitHub repositories.

Here at GitHub, our developers, writers, and designers use branches for
keeping bug fixes and feature work separate from our main (production)
branch. When a change is ready, they merge their branch into main.

Full Stack Development
Page

Department of CSE

What is CSS?

While HTML is a markup language used to format/structure a web page,
CSS is a design language that you use to make your web page look nice
and presentable.

CSS stands for Cascading Style Sheets, and you use it to improve the
appearance of a web page. By adding thoughtful CSS styles, you make
your page more attractive and pleasant for the end user to view and use.
Imagine if human beings were just made to have skeletons and bare
bones - how would that look? Not nice if you ask me. So CSS is like our
skin, hair, and general physical appearance.

You can also use CSS to layout elements by positioning them in
specified areas of your page.

To access these elements, you have to “select” them. You can select a
single or multiple web elements and specify how you want them to look
or be positioned.

The rules that govern this process are called CSS selectors.
With CSS you can set the colour and background of your elements, as
well as the typeface, margins, spacing, padding and so much more.

If you remember our example HTML page, we had elements which were
pretty self-explanatory. For example, | stated that | would change the
color of the level one heading h1 to red.

To illustrate how CSS works, | will be sharing the code which sets the
background-color of the three levels of headers to red, blue, and green
respectively:

hi
background-color: #ffoeeo

Page

https://www.freecodecamp.org/news/use-css-selectors-to-style-webpage/

Department of CSE

h2 {
background-color: #000eFF;

h3 {
background-color: #@0FFoe;

em {
background-color: #000000;
color: #ffffff;

}

localhost:3000/styles.css

The above style, when applied, will change the appearance of our web
page to this:

This i P As vou can se, | placed an empabisis on the word"paragraph’. Now, I willchange alsothe backeround color of the word "paragraph o blck, and i tes color to green, all with fust CSS.
The main essence of this tutorialis to:
o Show you how to format a web document with HTML
o Show you how to design a web page with CSS
o Show you how to program a web document with JavaSeript
Next, [am going to add two numbers and display the result, all with JavaScript
First number:2
Second number: 7

Therefore, the sum of the two of those is: (placeholder for the answer)

| Getthe Sum |

Cool, right?

Full Stack Development

Page

Department of CSE

We access each of the elements we want to work on by "selecting"
them. The h1 selects all level 1 headings in the page, the h2 selects the
level 2 elements, and so on. You can select any single HTML element
you want and specify how you want it to look or be positioned.

Want to learn more about CSS? You can check out the second part of
freeCodeCamp's Responsive Web Design certification to get started.

What is JavaScript?

Now, if HTML is the markup language and CSS is the design language,
then JavaScript is the programming language.

If you don’t know what programming is, think of certain actions you take
in your daily life:

When you sense danger, you run. When you are hungry, you eat. When
you are tired, you sleep. When you are cold, you look for warmth. When
crossing a busy road, you calculate the distance of vehicles away from
you.

Your brain has been programmed to react in a certain way or do certain
things whenever something happens. In this same way, you can
program your web page or individual elements to react a certain way and
to do something when something else (an event) happens.

You can program actions, conditions, calculations, network requests,
concurrent tasks and many other kinds of instructions.

You can access any elements through the Document Object Model API
(DOM) and make them change however you want them to.

The DOM is a tree-like representation of the web page that gets loaded
into the browser.

Page

https://www.freecodecamp.org/learn/responsive-web-design/
https://www.freecodecamp.org/learn/responsive-web-design/
https://www.freecodecamp.org/news/how-to-manipulate-the-dom-beginners-guide/
https://www.freecodecamp.org/news/how-to-manipulate-the-dom-beginners-guide/

Department of CSE

Document

Root Element
<html>

I

Element
<head>

Element
<title>

Attribute
"href"

Element
<a>

Element
<hl>

Text
"My Title"

Text
"My Link"

Text
"My Header”

h element on the web page is represented on the DOM
Thanks to the DOM, we can use methods like getElementById() t0 access
elements from our web page.
JavaScript allows you to make your webpage “think and act”, which is
what programming is all abouit.
If you remember from our example HTML page, | mentioned that | was
going to sum up the two numbers displayed on the page and then

display the result in the place of the placeholder text. The calculation

runs once the button gets clicked.

Full Stack Development

Page

Department of CSE MRCET

This is o g As you can see,] placed an empahisi on the word "pasagraph”. Now, [willchange lso the background color o the word "paragraph” to black,and istext color to green, allwith just CSS.
The main essence of this tutorial s to:
o Show you how to format a web document with HTML
o Show you how to design a web page with CSS
o Show you how to program a web document with JavaScript
Next, I am going to add two numbers and display the result,all with JavaScript
First number:)
Second number; 7

Therefore, the sum of the two of those fs: (placeholder for the ansiver)

| Getthe Sum |

cking the "Get the sum™ button will display the sum of 2 and 7
This code illustrates how you can do calculations with JavaScript:

function displaySum
let firstNum = Number(document.getElementByld('firstNum').innerHTML

let secondNum = Number(document.getElementByld('secondNum').innerHTML

let total = firstNum + secondNum

document.getElementByld("answer”).innerHTML =~ ${firstNum} + ${secondNum}, equals to ${total’}"

document.getElementByld(‘'sumButton’).addEventListener("click”, displaySum
Remember what | told you about HTML attributes and their uses? This

code displays just that.

The displaysum is a function which gets both items from the web page,
converts them to numbers (with the Number method), sums them up,
and passes them in as inner values to another element.

Page

Department of CSE MRCET

Full Stack Development a4 |

Page

Department of CSE

The reason we were able to access these elements in our JavaScript
was because we had set unique attributes on them, to help us identify

them.

So thanks to this:

// id attribute has been set in all three
span id= "firstNum">2 <br

.7</span

span id= "answer">(placeholder for the answer)</span
We were able to do this:

/lgetElementByld will get all HTML elements by a specific "id" attribute

let firstNum = Number(document.getElementByld('firstNum’).innerHTML

let secondNum = Number(document.getElementByld(‘'secondNum’).innerHTML

let total = firstNum + secondNum

document.getElementByld("answer").innerHTML =" ${firstNum} + ${secondNum}, equals to

Finally, upon clicking the button, you will see the sum of the two
numbers on the newly updated page:

ack Developmen

Page

Department of CSE

L With S5, vl u tis fo geen color

Thisis o g As you can see, I placed an empahisis on the word "paragraph”. Noww, T willchange aso the backeround color o the word "paragraph o black,and i text color to green, all with just CSS.
The main essence of this tutorial is to:
o Show you how to format a web document with HTML
o Show you how to design a web page with CSS
+ Show you how to program a web document with JavaScript
Next, [am going to add the following two numbers and display the result, all with JavaScript
First number:)
Second number: 7

Therefore, the sum of the two of those numbers 1s: 2 = 7, equals to 9

| Clckto add! |

plus 7 is equals to 9

If you want to get started with JavaScript, you can check out
freeCodeCamp's JavaScript Algorithms and Data Structures certification.
And you can use this great Intro to JS course to supplement your learning.

How to Put HTML, CSS, and JavaScript Together

Together, we use these three languages to format, design, and program
web pages.

And when you link together some web pages with hyperlinks, along with
all their assets like images, videos, and so on that are on the server
computer, it gets rendered into a website.

This rendering typically happens on the front end, where the users can
see what's being displayed and interact with it.

On the other hand, data, especially sensitive information like passwords,
are stored and supplied from the back end part of the website. This is
the part of a website which exists only on the server computer, and isn't
displayed on the front-end browser. There, the user cannot see or
readily access that information.

ack Developmen
Page

https://www.freecodecamp.org/learn/javascript-algorithms-and-data-structures/
https://www.freecodecamp.org/news/learn-javascript-full-course/

Department of CSE

Wrapping Up
As a web developer, the three main languages we use to build websites
are HTML, CSS, and JavaScript.

JavaScript is the programming language, we use HTML to structure the
site, and we use CSS to design and layout the web page.

These days, CSS has become more than just a design language,
though. You can actually implement animations and smooth transitions
with just CSS.

In fact, you can do some basic programming with CSS too. An example
of this is when you use media queries, where you define different style
rules for different kinds of screens (resolutions).

JavaScript has also grown beyond being used just in the browser as
well. We now use it on the server thanks to Node.js.

But the basic fact remains: HTML, CSS, and JavaScript are the main
languages of the Web.

So that's it. The languages of the Web explained in basic terms. | really
hope you got something useful from this article.

Web Servers Shell:

A web shell is a shell-like interface that enables a web server to be
remotely accessed, often for the purposes of cyberattacks.[1] A web
shell is unique in that a web browser is used to interact with it.[2][3]

A web shell could be programmed in any programming language that is
supported on a server. Web shells are most commonly written in the
PHP programming language due to the widespread usage of PHP for
web applications. However, Active Server Pages, ASP.NET, Python, Perl,

Page

Department of CSE

Ruby, and Unix shell scripts are also used, although these languages are
less commonly used.[1][2][3]

Using network monitoring tools, an attacker can find vulnerabilities that
can potentially allow delivery of a web shell. These vulnerabilities are
often present in applications that are run on a web server.[2]

An attacker can use a web shell to issue shell commands, perform
privilege escalation on the web server, and the ability to upload, delete,
download, and execute files to and from the web server.[2

UNIX CLI Version control

We have various commands that help us to find out the Unix variant, type, and
machine. The most common Unix command is uname, and we will talk about
it first, followed by variant-specific information.

Checking Unix version

1. Open the terminal application and then type the following uname
command:
uname
uname -a

. Display the current release level (OS Version) of the Unix operating

system.
uname -r

3. You will see Unix OS version on screen. To see architecture of Unix,
run:
uname -m

Full Stack Development

Page

Department of CSE

Here is outputs from my FreeBSD Unix server:

@nixcraft-wks0l1l tmp § ssh 192.168.2.17

@nixcraft-:

13.0-RELEASE-p1
=k@nixcraft-mé

amd64

@nixcraft-m
13.0-RELEASE-pl

@nixcraft-m
FreeBSD 13.0-RELEASE-pl

@nixcraft-m6700 ~

Examples

: FreeBSD

: 8 hours,
145 (pkg)
bash 5.1.4
[dev/pts/0O
Intel 17-3840QM (8) @ 2.791GHz

: GK104GLM [Quadro K5000M]

12136MiB / 32628MiB

Although uname available on all Unix variants, there are other ways to display
OS versions and names. Let us look at operating system-specific information.

How to check FreeBSD unix version

Type the following command to determine the version and patch level:

freebsd-version

freebsd-version -k
freebsd-version -r
freebsd-version -u

Full Stack Developmen

Page

https://www.cyberciti.biz/faq/how-to-find-out-freebsd-version-and-patch-level-number/

Department of CSE

freebsd-version =}
SE-pl0
freebsdl0:~ #
@freebsdl0:~ # freebsd-version =-u
. 1-RELEASE-p14
root@freebsdl0:~ #
root@freebsdl0:~ # getconf LONG BIT
~oot@freebsdl0:~ #
oot@freebsdl0:~ # uname -mrs
~BSD 10.1-RELEASE-pl0 amd64
reebsdl0:~ #
bsdl0:~ #

Show FreeBSD Unix Version

A note about macOS

Open the macOS Terminal app and then type any one of the following

command to print macOS or Mac OS X version:
sw_vers

OR

Page

https://www.cyberciti.biz/faq/mac-osx-find-tell-operating-system-version-from-bash-prompt/

Department of CSE MRCET

Full Stack Development 50 |

Page

Department of CSE

system_profiler SPSoftwareDataType

[B vivek — -zsh — B0x28

Last login: Sun May 3@ 17:27:54 on ttys@el
vivek@viveks—MacBook-Pro ~ % uname -a

Darwin viveks-MacBook-Pro.local 28.5.8 Darwin Kernel Version 28.5.8: Sat May &8
85:18:33 PDT 2021; root:xnu-7195.121.3~9/RELEASE_XB&_&4 xBSH_64
vivekOviveks-MacBook-Pro ~ %

[vivek@viveks—MacBook-Pro ~ % sw_vers

ProductName: macDs

ProductVersion: 11.4

BuildVersion: 28F71

[vivek@viveks-MacBook-Pro ~ %

[vivek@viveks=MacBook=Fro ~ % system_profiler SPSoftwareDataType
Software:

System Software Overview:

System Version: macOS 11.4 (28F71)
Karnel Version: Darwin 28.5.8

Boot Volume: OWC Aura Pro X2

Boot Mode: Normal

Computer Wame: vivek's MacBook Pro
User Mama: vivek gite [vivak)

Secure Virtusl Memory: Ensbled
System Integrity Protection: Enabled
Time since boot: 9 days 7:89

vivekOviveks-MacBook-Pro ~ % uname -mrs
Darwin 28.5.8 xBb&_b4
vivekiviveks=-MacBook=-Pro ~ % |

HP-UX Unix

Use the swlist command as follows for determining your HP-UX Unix system
version:

swlist

swlist | grep -i oe

swlist HPUX*OE*

swlist HPUX*OE*

You will see something as follows:

HPUX11i-OE-Ent B.11.23.0606 HP-UX Enterprise Operating Environment
Component

OR

HPUX11i-TCOE B.11.23.0409 HP-UX Technical Computing OE Component

Full Stack Development

Page

Department of CSE

To see machine model from HP, type:
model

machinfo

getconf MACHINE_MODEL

Oracle or Sun Solaris OS

Verifying Operating system version on Oracle or Sun Solaris Unix is easy:
uname
uname -a
uname -r
cat command
cat /etc/release

You will get info such as oracle solaris 11 (5.11) OR oracle Solaris 11.1

SPARC |

IBM AIX Unix

To view the base level of the Unix system OS from IBM, type:
uname

uname -a

uname -r

oslevel

prtconf

See oslvel AIX command man-page for more info.

Summing up

The uname and other Unix command commands can help you determine
information about your Unix server or desktop, including its hardware type,
machine model, operating system version. The uname and other options
various. Hence, see the following man pages:

man uname

Page

https://www.cyberciti.biz/faq/linux-unix-appleosx-bsd-cat-command-examples/?utm_source=Linux_Unix_Command&utm_medium=faq&utm_campaign=nixcmd
https://www.ibm.com/docs/en/aix/7.2?topic=o-oslevel-command

Department of CSE

Git & Github

Introduction to Git

For installation purposes on ubuntu, you can refer to this article: How
to Install, Configure and Use GIT on Ubuntu?

Git is a distributed version control system. So, What is a Version Control
System?

A version Control system is a system that maintains different versions
of your project when we work in a team or as an individual. (system
managing changes to files) As the project progresses, new features get
added to it. So, a version control system maintains all the different
versions of your project for you and you can roll back to any version
you want without causing any trouble to you for maintaining different
versions by giving names to it like MyProject, MyProjectWithFeaturel,
etc.

Distributed Version control system means every collaborator(any
developer working on a team project)has a local repository of the
project in his/her local machine unlike central where team members
should have an internet connection to every time update their work to
the main central repository.

So, by distributed we mean: the project is distributed. A repository is an
area that keeps all your project files, images, etc. In terms of Github:
different versions of projects correspond to commits.

For more details on introduction to Github, you can refer: Introduction
to Github

Git Repository Structure
It consists of 4 parts:

Department of CSE

Working directory: This is your local directory where you make the
project (write code) and make changes to it.

Staging Area (or index): this is an area where you first need to put your
project before committing. This is used for code review by other team
members.

Local Repository: this is your local repository where you commit
changes to the project before pushing them to the central repository
on Github. This is what is provided by the distributed version control
system. This corresponds to the .git folder in our directory.

Central Repository: This is the main project on the central server, a
copy of which is with every team member as a local repository.

All the repository structure is internal to Git and is transparent to the
developer.

Some commands which relate to repository structure:

// transfers your project from working directory
// to staging area.
git add .

// transfers your project from staging area to
// Local Repository.
git commit -m "your message here"

// transfers project from local to central repository.

// (requires internet)

git push

Github

Github basically is a for-profit company owned by Microsoft, which
hosts Git repositories online. It helps users share their git repository
online, with other users, or access it remotely. You can also host a
public repository for free on Github.

Page

Department of CSE

User share their repository online for various reasons including but not
limited to project deployment, project sharing, open source
contribution, helping out the community and many such.

Accessing Github central repository via HTTPS or SSH

Here, transfer project means transfer changes as git is very lightweight
and works on changes in a project. It internally does the transfer by
using Lossless Compression Techniques and transferring compressed
files. Https is the default way to access Github central repository.

By git remote add origin http_url: remote means the remote central
repository. Origin corresponds to your central repository which you
need to define (hereby giving HTTPS URL) in order to push changes to
Github.

Via SSH: connect to Linux or other servers remotely.

If you access Github by ssh you don’t need to type your username and
password every time you push changes to GitHub.

Terminal commands:

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"
This does the ssh key generation using RSA cryptographic algorithm.

eval "S(ssh-agent -s)" -> enable information about local login session.

ssh-add ~/.ssh/id_rsa ->add to ssh key.
cat ~/.ssh/id_rsa (use .pub file if not able to connect)
add this ssh key to github.

Now, go to github settings -> new ssh key -> create key

ssh -T git@github.com -> activate ssh key (test connection)

Page

mailto:your_email@example.com
mailto:your_email@example.com
mailto:git@github.com

Department of CSE

Refresh your github Page.
Working with git — Important Git commands
Git user configuration (First Step)

git --version (to check git version)

git config --global user.name "your name here"
git config --global user.email "your email here"
These are the information attached to commits.

Initialize directory

gitinit

initializes your directory to work with git and makes a local repository.
.git folder is made (OR)

git clone http_url

This is done if we have an existing git repository and we want to copy

its content to a new place.

Connecting to the remote repository

git remote add origin http_url/ssh_url

connect to the central repo to push/pull. pull means adopting the
changes on the remote repository to your local repository. push merges
the changes from your local repository to the remote repository.

git pull origin master

One should always first pull contents from the central repo before
pushing so that you are updated with other team members’ work. It
helps prevent merge conflicts. Here, master means the master branch
(in Git).

Page

Department of CSE

Stash Area in git

git stash
Whichever files are present in the staging area, it will move that files to
stash before committing it.

git stash pop
Whenever we want files for commit from stash we should use this
command.

git stash clear
By doing this, all files from stash area is been deleted.

Steps to add a file to a remote Repository:

First, your file is in your working directory, Move it to the staging area
by typing:

git add -A (for all files and folders)

#To add all files only in the current directory

git add .

git status: here, untracked files mean files that you haven’t added to
the staging area. Changes are not staged for commit means you have
staged the file earlier than you have made changes in that files in your
working directory and the changes need to be staged once more.
Changes ready to be committed: these are files that have been
committed and are ready to be pushed to the central repository.

git commit -a -m "message for commit"

-a: commit all files and for files that have been
staged earlier need not to be git add once more

-a option does that automatically.

git push origin master -> pushes your files to

Page

Department of CSE

github master branch
git push origin anyOtherBranch -> pushes any
other branch to github.
git log ; to see all your commits
git checkout commitObject(first 8 bits) file.txt->
revert back to this previous commit for file file.txt
Previous commits m=ight be seen through the git log command.

HEAD -> pointer to our latest commit.
Ilgnoring files while committing

In many cases, the project creates a lot of logs and other irrelevant files
which are to be ignored. So to ignore those files, we have to put their
names in“.gitignore” file.

touch .gitignore

echo "filename.ext" >>.gitignore

#to ignore all files with .log extension

echo "*.log" > .gitignore

Now the filenames written in the .gitignore file would be ignored while
pushing a new commit. To get the changes between commits, commit,
and working tree.

git diff

‘git diff command compares the staging area with the working
directory and tells us the changes made. It compares the earlier
information as well as the current modified information.

Branching in Git

create branch ->
git branch myBranch
or

Page

Department of CSE

git checkout -b myBranch -> make and switch to the
branch myBranch
Do the work in your branch. Then,

git checkout master ; to switch back to master branch
Now, merge contents with your myBranch By:

git merge myBranch (writing in master branch)
This merger makes a new commit.

Another way

git rebase myBranch
This merges the branch with the master in a serial fashion. Now,

git push origin master

Contributing to Open Source

Open Source might be considered as a way where user across the globe
may share their opinions, customizations or work together to solve an
issue or to complete the desired project together. Many companies
host there repositories online on Github to allow access to developers
to make changes to their product. Some companies(not necessarily all)
rewards their contributors in different ways.

You can contribute to any open source project on Github by forking it,
making desired changes to the forked repository, and then opening a
pull request. The project owner will review your project and will ask to
improve it or will merge it.

Department of CSE

UNIT - 11

Frontend Development: Javascript basics OOPS Aspects of
JavaScript Memory usage and Functions in JS AJAX for data
exchange with server jQuery Framework jQuery events, Ul
components etc. JSON data format.

Javascript basics OOPS:
As JavaScript is widely used in Web Development, in this article we will
explore some of the Object Oriented mechanisms supported
by JavaScript to get the most out of it. Some of the common interview
guestions in JavaScript on OOPS include:

« How is Object-Oriented Programming implemented in

JavaScript?

. How does it differ from other languages?

. Can you implement Inheritance in JavaScript?
and so on...

There are certain features or mechanisms which make a Language
Object-Oriented like:

OOPs Concept in JavaScript

Object Classes Encapsulation

Abstraction Inheritance Polymorphism

Let’s dive into the details of each one of them and see how they are
implemented in JavaScript.

Object: An Object is a unigue entity that

contains properties and methods. For example “a car” is a real-life
Object, which has some characteristics like color, type, model, and
horsepower and performs certain actions like driving. The characteristics

Full Stack Development 60
Page

https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Object
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Classes
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Encapsulation
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Abstraction
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Inheritance
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Polymorphism
https://www.geeksforgeeks.org/objects-in-javascript/

Department of CSE

of an Object are called Properties in Object-Oriented Programming and
the actions are called methods. An Obiject is an instance of a class.
Objects are everywhere in JavaScript, almost every element is an Object

whether it is a function, array, or string.

Note: A Method in javascript is a property of an object whose value is a

function.
The object can be created in two ways in JavaScript:

« Object Literal
« Object Constructor
Example: Using an Object Literal.

« Javascript

// Defining object

let person = {
first_name: 'Mukul',
last_name: 'Latiyan',

//method
getFunction : function(){
return (" The name of the person is
${person.first _name} ${person.last name})
¥
//object within object
phone_number : {
mobile: '12345"',
landline: '6789"
}
}

console.log(person.getFunction());
console.log(person.phone_number.landline);

Output:

(R {2 Inspector Console [Debugger {} Style Editor (S Performance
'@r v Filter output

The name of the person is Mukul Latiyan

6789

xample: Using an Object Constructor.

« Javascript

Full Stack Development

1k Memory »

Page

Department of CSE

// Using a constructor

function person(first_name,last_name){
this.first_name = first_name;
this.last_name = last_name;

}

// Creating new instances of person object

let personl = new person('Mukul’','Latiyan');

let person2 = new person('Rahul’, 'Avasthi');

console.log(personl.first_name);
console.log(" ${person2.first_name} ${person2.last_name});

Output:

(R {3 Inspector Console (O Debugger {} Style Editor (G Performance £k Memory

W Filter output

Mukul
Rahul Avasthi

N
ote: The JavaScript Object.create() Method creates a new object, using
an existing object as the prototype of the newly created object.

Example:

« Javascript

// Object.create() example a
// simple object with some properties
const coder = {
isStudying : false,
printIntroduction : function(){
console.log("My name is ${this.name}. Am I
studying?: ${this.isStudying}.")

}
// Object.create() method

const me = Object.create(coder);

// "name" is a property set on "me", but not on "coder"
me.name = 'Mukul’;

// Inherited properties can be overwritten
me.isStudying = true;

Full Stack Development

Page

https://www.geeksforgeeks.org/object-create-javascript/

Department of CSE

me.printIntroduction();

Output:

R {3 Inspector Console ([Debugger {} Style Editor (G Performance #k Memory »
'@]’ v Filter output

My name is Mukul. Am I studying?: true

Classes: Classes are blueprints of an Object. A class can have many
Objects because the class is a template while Objects are instances of
the class or the concrete implementation.

Before we move further into implementation, we should know unlike other
Object Oriented languages there are no classes in JavaScript we have
only Object. To be more precise, JavaScript is a prototype-based Object
Oriented Language, which means it doesn’t have classes, rather it defines
behaviors using a constructor function and then reuses it using the
prototype.

Note: Even the classes provided by ECMA2015 are objects.

JavaScript classes, introduced in ECMAScript 2015, are primarily
syntactical sugar over JavaScript’s existing prototype-based inheritance.
The class syntax is not introducing a new object-oriented inheritance
model to JavaScript. JavaScript classes provide a much simpler and
clearer syntax to create objects and deal with inheritance.

-Mozilla Developer Network

Example: Let's use ES6 classes then we will look at the traditional way of
defining an Object and simulate them as classes.

« Javascript

// Defining class using es6
class Vehicle {
constructor(name, maker, engine) {
this.name = name;
this.maker = maker;
this.engine = engine;
}
getDetails(){
return ("The name of the bike is ${this.name}."

Full Stack Development
Page

https://www.geeksforgeeks.org/javascript-classes/

Department of CSE

}
// Making object with the help of the constructor

let bikel = new Vehicle('Hayabusa', 'Suzuki', '1340cc');
let bike2 = new Vehicle('Ninja', 'Kawasaki', '998cc');

console.log(bikel.name); // Hayabusa
console.log(bike2.maker); // Kawasaki
console.log(bikel.getDetails());

Output:

(R {3 Inspector Console [Debugger {} Style Editor (S Performance

'@]’ v Filter output
Hayabusa

Kawasaki

The name of the bike is Hayabusa.

Example: Traditional Way of defining an Object and simulating them as
classes.

« Javascript

// Defining class in a Traditional Way.
function Vehicle(name,maker,engine){
this.name = name,
this.maker = maker,
this.engine = engine

}s

Vehicle.prototype.getDetails = function(){
console.log('The name of the bike is '+ this.name);

let bikel = new Vehicle('Hayabusa', 'Suzuki', '1340cc');
let bike2 = new Vehicle('Ninja', 'Kawasaki', '998cc');

console.log(bikel.name);
console.log(bike2.maker);
console.log(bikel.getDetails());

Output:

Full Stack Development

Page

Department of CSE

(R {37 Inspector Console [Debugger {} Style Editor (S Performance £k Memory »
'[ﬁ]' v Filter output

Hayabusa
Kawasaki

The name of the bike is Hayabusa.

As seen in the above example it is much simpler to define and reuse
objects in ES6. Hence, we would be using ES6 in all of our examples.

Abstraction: Abstraction means displaying only essential information and
hiding the details. Data abstraction refers to providing only essential
information about the data to the outside world, hiding the background
details or implementation.

Encapsulation: The process of wrapping properties and

functions within a single unit is known as encapsulation.

Example: Let's understand encapsulation with an example.

« Javascript

// Encapsulation example
class person{
constructor(name,id){
this.name = name;
this.id = id;
}
add_Address(add){
this.add = add;
}
getDetails(){
console.log(Name is ${this.name},
Address is: ${this.add});

let personl = new person('Mukul',21);
personl.add_Address('Delhi');
personl.getDetails();

Output: In this example, we simply create a person Object using the
constructor, Initialize its properties and use its functions. We are not
bothered by the implementation details. We are working with an Object’s
interface without considering the implementation details.

ull Stack Development

Page

Department of CSE

R {7 Inspector Console [Debugger {} Style Editor (G Performance £k Memory »

'@l’ ? Filter output

Name is Mukul,Address is: Delhi

ometimes encapsulation refers to the hiding of data or data

Abstraction which means representing essential features hiding the
background detail. Most of the OOP languages provide access modifiers
to restrict the scope of a variable, but there are no such access modifiers
in JavaScript, there are certain ways by which we can restrict the scope of
variables within the Class/Object.

Example:

« Javascript

// Abstraction example
function person(fname,lname){
let firstname = fname;
let lastname = lname;

let getDetails_noaccess = function(){
return ("First name is: ${firstname} Last
name is: ${lastname}’);

this.getDetails_access = function(){
return ("First name is: ${firstname}, Last
name is: ${lastname});

}
}

let personl = new person('Mukul','Latiyan');
console.log(personl.firstname);
console.log(personl.getDetails_noaccess);
console.log(personl.getDetails_access());

Output: In this example, we try to access some
property(person1.firstname) and functions(person1.getDetails_noaccess)
but it returns undefined while there is a method that we can access from
the person object(personi.getDetails_access()). By changing the way we
define a function we can restrict its scope.

Full Stack Development
Page

Department of CSE

(R {3 Inspector Console (O Debugger {} Style Editor (G Performance #k Memory >
'@]‘ ? Filter output

undefined

undefined

First name is: Mukul, Last name is: Latiyan

Inheritance: It is a concept in which some properties and methods of an
Object are being used by another Object. Unlike most of the OOP
languages where classes inherit classes, JavaScript Objects inherit
Objects i.e. certain features (property and methods) of one object can be
reused by other Objects.

Example: Let's understand inheritance and polymorphism with an
example.

« Javascript

// Inheritance example
class person{
constructor(name){
this.name = name;
}
// method to return the string
toString(){
return (“Name of person: ${this.name});

}

class student extends person{
constructor(name,id){
// super keyword for calling the above
// class constructor
super(name);
this.id = id;
}
toString(){
return (" ${super.toString()},
Student ID: ${this.id});

}
let studentl = new student('Mukul',22);

console.log(studentl.toString());

Output: In this example, we define a Person Object with certain
properties and methods and then we inherit the Person Object in the

Full Stack Development

Page

Department of CSE

Student Object and use all the properties and methods of the person
Object as well as define certain properties and methods for the Student
Object.

[R L2 Inspector Console [Debugger {} Style Editor (G Performance £k Memory >

'[E]' ? Filter output

Name of person: Mukul,Student ID: 22

N
ote: The Person and Student objects both have the same method (i.e
toString()), this is called Method Overriding. Method Overriding allows a
method in a child class to have the same name(polymorphism) and
method signature as that of a parent class.
In the above code, the super keyword is used to refer to the immediate
parent class’s instance variable.

Polymorphism: Polymorphism is one of the core concepts of object-oriented
programming languages. Polymorphism means the same function with
different signatures is called many times. In real life, for example, a boy at
the same time may be a student, a class monitor, etc. So a boy can
perform different operations at the same time. Polymorphism can be
achieved by method overriding and method overloading

Functions in JS AJAX

What is Ajax?

Ajax stands for Asynchronous Javascript And Xml. Ajax is just a means of
loading data from the server and selectively updating parts of a web page
without reloading the whole page.

Basically, what Ajax does is make use of the browser's built-in
XMLHttpRequest (XHR) object to send and receive information to and
from a web server asynchronously, in the background, without blocking
the page or interfering with the user's experience.

Page

https://www.geeksforgeeks.org/polymorphism-in-javascript/

Department of CSE

Ajax has become so popular that you hardly find an application that
doesn't use Ajax to some extent. The example of some large-scale Ajax-
driven online applications are: Gmail, Google Maps, Google Docs,
YouTube, Facebook, Flickr, and so many other applications.

Note: Ajax is not a new technology, in fact, Ajax is not even really a
technology at all. Ajax is just a term to describe the process of exchanging
data from a web server asynchronously through JavaScript, without
refreshing the page.

Tip: Don't get confused by the term X (i.e. XML) in AJAX. It is only there
for historical reasons. Other data exchange format such as JSON, HTML,
or plain text can be used instead of XML.

Understanding How Ajax Works

To perform Ajax communication JavaScript uses a special object built into
the browser—an XMLHttpRequest (XHR) object—to make HTTP requests
to the server and receive data in response.

All modern browsers (Chrome, Firefox, IE7+, Safari, Opera) support the
XMLHttpRequest object.

The following illustrations demonstrate how Ajax communication works:

Ajax lllustration

Page

Department of CSE

Since Ajax requests are usually asynchronous, execution of the script
continues as soon as the Ajax request is sent, i.e. the browser will not halt
the script execution until the server response comes back.

In the following section we'll discuss each step involved in this process
one by one:

Sending Request and Retrieving the Response

Before you perform Ajax communication between client and server, the
first thing you must do is to instantiate an XMLHttpRequest object, as
shown below:

var request = new XMLHttpRequest();

Now, the next step in sending the request to the server is to instantiating
the newly-created request object using the open() method of the
XMLHttpRequest object.

The open() method typically accepts two parameters— the HTTP request
method to use, such as "GET", "POST", etc., and the URL to send the
request to, like this:

request.open("GET", "info.txt"); -Or- request.open("POST", "add-
user.php");

Tip: The file can be of any kind, like .txt or .xml, or server-side scripting
files, like .php or .asp, which can perform some actions on the server (e.g.
inserting or reading data from database) before sending the response
back to the client.

Page

Department of CSE

And finally send the request to the server using the send() method of the
XMLHttpRequest object.

request.send(); -Or- request.send(body);

Note: The send() method accepts an optional body parameter which allow
us to specify the request's body. This is primarily used for HTTP POST
requests, since the HTTP GET request doesn't have a request body, just
request headers.

The GET method is generally used to send small amount of data to the
server. Whereas, the POST method is used to send large amount of data,
such as form data.

In GET method, the data is sent as URL parameters. But, in POST
method, the data is sent to the server as a part of the HTTP request body.
Data sent through POST method will not visible in the URL.

See the chapter on HTTP GET vs. POST for a detailed comparison of
these two methods.

In the following section we'll take a closer look at how Ajax requests
actually works.

Performing an Ajax GET Request

The GET request is typically used to get or retrieve some kind of
information from the server that doesn't require any manipulation or
change in database, for example, fetching search results based on a term,
fetching user details based on their id or name, and so on.

Deye
2

Page

Department of CSE

The following example will show you how to make an Ajax GET request in
JavaScript.

ExampleTry this code »
<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>JavaScript Ajax GET Demo</title>
<script>
function displayFullName() {
/I Creating the XMLHttpRequest object

var request = new XMLHttpRequest();

/I Instantiating the request object

request.open("GET", "greet.php?fname=John&name=Clark");

/I Defining event listener for readystatechange event
request.onreadystatechange = function() {

/I Check if the request is compete and was successful

if(this.readyState === 4 && this.status === 200) {

Page

Department of CSE

/Il Inserting the response from server into an HTML element

document.getElementByld("result").innerHTML =
this.responseText;

}

/I Sending the request to the server
request.send();

}

</script>

</head>

<body>
<div id="result">

<p>Content of the result DIV box will be replaced by the server
response</p>

</div>

<button type="button" onclick="displayFullName()">Display Full
Name</button>

</body>

</html>

When the request is asynchronous, the send() method returns
immediately after sending the request. Therefore you must check where
the response currently stands in its lifecycle before processing it using the
readyState property of the XMLHttpRequest object.

Page

Department of CSE

The readyState is an integer that specifies the status of an HTTP request.
Also, the function assigned to the onreadystatechange event handler
called every time the readyState property changes. The possible values of
the readyState property are summarized below.

Value State Description

0 UNSENT An XMLHttpRequest object has been created, but the
open() method hasn't been called yet (i.e. request not initialized).

1 OPENED The open() method has been called (i.e. server
connection established).

2 HEADERS_RECEIVED The send() method has been called (i.e.
server has received the request).

3 LOADING The server is processing the request.

4 DONE The request has been processed and the response is
ready.

Note: Theoretically, the readystatechange event should be triggered every
time the readyState property changes. But, most browsers do not fire this
event when readyState changes to 0 or 1. However, all browsers fire this
event when readyState changes to 4 .

The status property returns the numerical HTTP status code of the
XMLHttpRequest's response. Some of the common HTTP status codes
are listed below:

200 — OK. The server successfully processed the request.

404 — Not Found. The server can't find the requested page.

Page

Department of CSE

503 — Service Unavailable. The server is temporarily unavailable.

Please check out the HTTP status codes reference for a complete list of
response codes.

Here's the code from our "greet.php" file that simply creates the full name
of a person by joining their first name and last name and outputs a
greeting message.

ExampleDownload

<?php

if(isset($_GET["fname"]) && isset($_GET["Iname'])) {

$fname = htmispecialchars($_GET["fname"));

$Iname = htmispecialchars($_GET["Iname"]);

/I Creating full name by joining first and last name

$fullname = $fname . " " . $Iname;

// Displaying a welcome message

echo "Hello, $fullname! Welcome to our website.";
} else {

echo "Hi there! Welcome to our website.";

Page

Department of CSE

Performing an Ajax POST Request

The POST method is mainly used to submit a form data to the web server.

The following example will show you how to submit form data to the server

using Ajax.

ExampleTry this code »

<IDOCTYPE htmlI>

<html lang="en">

<head>

<meta charset="utf-8">

<title>JavaScript Ajax POST Demox<t/title>

<script>

function postComment() {

/I Creating the XMLHttpRequest object

var request = new XMLHttpRequest();

/I Instantiating the request object

request.open("POST", "confirmation.php");

/I Defining event listener for readystatechange event

request.onreadystatechange = function() {

Page

Department of CSE

/I Check if the request is compete and was successful
if(this.readyState === 4 && this.status === 200) {
/I Inserting the response from server into an HTML element

document.getElementByld("result").innerHTML =
this.responseText;

}

/I Retrieving the form data

var myForm = document.getElementByld("myForm");

var formData = new FormData(myForm);

/I Sending the request to the server
request.send(formData);
}
</script>
</head>
<body>
<form id="myForm">
<label>Name:</label>
<div><input type="text" name="name"></div>

Page

Department of CSE

<label>Comment:</label>
<div><textarea name="comment"></textarea></div>

<p><button type="button" onclick="postComment()">Post
Comment</button></p>

</form>
<div id="result">

<p>Content of the result DIV box will be replaced by the server
response</p>

</div>
</body>
</html>

If you are not using the FormData object to send form data, for example, if
you're sending the form data to the server in the query string format, i.e.
request.send(key1=value1&key2=value2) then you need to explicitly set
the request header using setRequestHeader() method, like this:

request.setRequestHeader("Content-type", "application/x-www-form-
urlencoded");

The setRequestHeader() method, must be called after calling open(), but
before calling send().

Some common request headers are: application/x-www-form-urlencoded,
multipart/form-data, application/json, application/xml, text/plain, text/html,
and so on.

Page

Department of CSE

Note: The FormData object provides an easy way to construct a set of
key/value pairs representing form fields and their values which can be
sent using XMLHttpRequest.send() method. The transmitted data is in the
same format that the form's submit() method would use to send the data if
the form's encoding type were set to multipart/form-data.

Here's the code of our "confirmation.php" file that simply outputs the
values submitted by the user.

ExampleDownload
<?php
If($—SERVER["REQUEST_METHOD"] == "POST") {

$name = htmispecialchars(trim($_POST["'name"]));

$comment = htmispecialchars(trim($_POST["comment")));

/I Check if form fields values are empty
if(lempty($name) && lempty($comment)) {

echo "<p>Hi, $name. Your comment has been received
successfully.<p>";

echo "<p>Here's the comment that you've entered:
$comment</p>";

} else {
echo "<p>Please fill all the fields in the form!</p>";

}

} else {

Page

Department of CSE

echo "<p>Something went wrong. Please try again.</p>";

}

?>

For security reasons, browsers do not allow you to make cross-domain
Ajax requests. This means you can only make Ajax requests to URLs from
the same domain as the original page, for example, if your application is
running on the domain "mysite.com", you cannot make Ajax request to
"othersite.com" or any other domain. This is commonly known as same
origin policy.

JSON data format.

What is JSON?

JSON stands for JavaScript Object Notation

JSON is a lightweight data-interchange format

JSON is plain text written in JavaScript object notation
JSON is used to send data between computers

JSON is language independent *

%

The JSON syntax is derived from JavaScript object notation, but the JSON
format is text only.

Code for reading and generating JSON exists in many programming languages.

The JSON format was originally specified by Douglas Crockford.

ack Developmen
Page

http://www.crockford.com/

Department of CSE

Why Use JSON?

The JSON format is syntactically similar to the code for creating JavaScript
objects. Because of this, a JavaScript program can easily convert JSON data
into JavaScript objects.

Since the format is text only, JSON data can easily be sent between computers,
and used by any programming language.

JavaScript has a built in function for converting JSON strings into JavaScript
objects:

JSON.parse()

JavaScript also has a built in function for converting an object into a JSON
string:

JSON.stringify()
You can receive pure text from a server and use it as a JavaScript object.
You can send a JavaScript object to a server in pure text format.

You can work with data as JavaScript objects, with no complicated parsing and
translations.

Full Stack Development
Page

Department of CSE

Storing Data

When storing data, the data has to be a certain format, and regardless of where
you choose to store it, text is always one of the legal formats.

JSON makes it possible to store JavaScript objects as text.

JSON Example

This example is a JSON string:

"name":"John", "age":30, "car":null}'
It defines an object with 3 properties:

e hame

e age

e car
Each property has a value.

If you parse the JSON string with a JavaScript program, you can access the
data as an object:

let personName = obj.name;
let personAge = obj.age;

Full Stack Developmen
Page

Department of CSE

UNIT - 11
REACT JS: Introduction to React React Router and Single Page Applications React
Forms, Flow Architecture and Introduction to Redux More Redux and Client-

Server Communication

Introduction to ReactJS

React is a popular JavaScript library used for web development. React.js or React)S or React are different ways
to represent React)S. Today’'s many large-scale companies (Netflix, Instagram, to name a few) also use React JS.
There are many advantages of using this framework over other frameworks, and It's ranking under the top 10
programming languages for the last few years under various language ranking indices.

What is React)S?

Full Stack Development
Page

Department of CSE

React.js is a front-end JavaScript framework developed by Facebook. To build composable user interfaces
predictably and efficiently using declarative code, we use React. It's an open-source and component-based
framework responsible for creating the application’s view layer.

e Reactls follows the Model View Controller (MVC) architecture, and the view layer is accountable for
handling mobile and web apps.

® React is famous for building single-page applications and mobile apps.

Let's take an example: Look at the Facebook page, which is entirely built on React, to understand how react
does works.

Chat Window

As the figure shows, React)S divides the Ulinto multiple components, making the code easier to debug. This
way, each function is assigned to a specific component, and it produces some HTML which is rendered as output
by the DOM.

React)S History:

Jordan Walke created React, who worked as a software engineer in Facebook has first released an early React
prototype called "FaxJS.”

In 2014, React was first deployed on Facebook's News Feed, and later in 2012 on Instagram.

As the figure shows, React)S divides the Ulinto multiple components, making the code easierto debug. This
way, each function is assigned to a specific component, and it produces some HTML which is rendered as output
by the DOM.

React)S History:

Jordan Walke created React, who worked as a software engineer in Facebook has first released an early React
prototype called "FaxJS.”

In 2014, React was first deployed on Facebook's News Feed, and later in 2012 on Instagram.

Full Stack Development

Page

Department of CSE

For interesting tech tutorials and career insights, subscribe to]
2 MindMajix YouTube Channel VY

J ¥l SUBSCRIBE & A 5 ‘
P%ﬁu

The current version of React.JS is V17.0.1.
Why do people choose to program with React?

There are various reasons why you should choose React)S as a primary tool for website Ul development. Here,
we highlight the most notable ones and explain why these specifics are so important:

Fast - Feel quick and responsive through the Apps made in React can handle complex updates.
Modular - Allow you to write many smaller, reusable files instead of writing large, dense files of code.
The modularity of React is an attractive solution for JavaScript's visibility issues.

Scalable - React performs best in the case of large programs that display a lot of data changes.
Flexible - React approaches differently by breaking them into components while building user
interfaces. This is incredibly important in large applications.

Popular - ReactJS gives better performance than other JavaScript languages due to t's implementation
of a virtual DOM.

Easy to learn - Since it requires minimal understanding of HTML and JavaScript, the learning curve is
low.

Server-side rendering and SEO friendly - React)S websites are famous for their server-side rendering
feature. It makes apps faster and much better for search engine ranking in comparison to products with
client-side rendering. React even produces more opportunities for website SEO and can occupy higher
positions on the search result’s page.

Reusable Ul components - React improves development and debugging processes.
Community - The number of tools and extensions available for React)S developers is tremendous. Along

with impressive out-of-box functionalities, more opportunities emerge once you discover how giant the
React galaxy is. React has a vibrant community and is supported by Facebook. Hence, it's a reliable tool
for website development.

ReactJS Features:

1. JSX - JavaScript Syntax Extension

JSX is a preferable choice for many web developers. Itisn't necessary to use JSXin React development, but
there is a massive difference between writing react.js documents in JSX and JavaScript. JSX is a syntax extension
to JavaScript. By using that, we can write HTML structures in the same file that contains JavaScript code.

2. Unidirectional Data Flow and Flux

Full Stack Development
Page

Department of CSE

React.js is designed so that it will only support data that is flowing downstream, in one direction. If the data has
to flow in another direction, you will need additional features.

DATA

Events

React contains a set of immutable values passed to the component renderer as properties in HTML tags. The
components cannot modify any properties directly but support a call back function to do modifications.

3. Virtual Document Object Model (VDOM)

React contains a lightweight representation of real DOM in the memory called Virtual DOM. Manipulating real
DOM is much slower compared to VDOM as nothing gets drawn on the screen. When any object’s state changes,
VDOM modifies only that object in real DOM instead of updating whole objects.

That makes things move fast, particularly compared with other front-end technologies that have to update each
object even if only a single object changes in the web application.

Full Stack Development
Page

Department of CSE

Initial View

cmd342

“ @

User Model

usérname: omai4l

Virtual DOM Real DOM

4. Extensions

React supports various extensions for application architecture. It supports server-side rendering, Flux, and Redux
extensively in web app development. React Native is a popular framework developed from React for creating
cross-compatible mobile apps.

5. Debugging

Testing React apps is easy due to large community support. Even Facebook provides a small browser extension
that makes React debugging easier and faster.

Next, let's understand some essential concepts of ReactJS.
Building Components of React - Components, State, Props, and Keys.
1. React)S Components

Components are the heart and soul of React. Components (like JavaScript functions) let you split the Ul into
independent, reusable pieces and think about each piece in isolation.

Components are building blocks of any React application. Every component has its structures, APIs, and
methods.

In React, there are two types of components, namely stateless functional and stateful class.

Full Stack Developmen :
Page

Department of CSE

e Functional Components - These components have no state of their own and contain only a render
method. They are simply Javascript functions that may or may not receive data as parameters.

Stateless functional components may derive data from other components as properties (props).

An example of representing functional component is shown below:

function WelcomeMessage (props) {

return <hl>Welcome to the , {props.name}</hl>;

e (Class Components - These components are more complex than functional components. They can
manage their state and to return JSX on the screen have a separate render method. You can pass data
from one class to other class components.

An example of representing class component is shown below:

class MyComponent extends React.Component {
render () {
return (

<div>This is the main component.</div>

) &

2. React State

A state is a place from where the data comes. The state in a component can change over time, and whenever it
changes, the component re-renders.

A change in a state can happen as a response to system-generated events or user action, and these changes
define the component’s behavior and how it will render.

ack Developmen

Page

Department of CSE

class Greetings extends React.Component {
state = {
name: "World"
i
updateName () {
this.setState({ name: "Mindmajix" });
}
render () {
return (
<div>
{this.state.name}

</div>

}

The state object is initialized in the constructor, and it can store multiple properties.
For changing the state object value, use this.setState() function.

To perform a merge between the new and the previous state, use the setState() function.

3. React Props

Props stand for properties, and they are read-only components.

Both Props and State are plain JavaScript objects and hold data that influence the output of render. And they are
different in one way: State is managed within the component (like variable declaration within a function), whereas
props get passed to the component (like function parameters).

Props are immutable, and this is why the component of a container should describe the state that can be
changed and updated, while the child components should only send data from the state using properties.

Full Stack Development

Page

Department of CSE

4. React Keys

In React, Keys are useful when working with dynamically created components. Setting the key value will keep
your component uniquely identified after the change.

They help React in identifying the items which have changed, are removed, or added.

In summary, State, Props, keys, and components are the few fundamental React concepts that you need to be
familiar with before working on it.

React Router

Routing is a process in which a user is directed to different pages based on their action or request.
ReactJS Router is mainly used for developing Single Page Web Applications. React Router is used
to define multiple routes in the application. When a user types a specific URL intothe browser,
and if this URL path matches any 'route’ inside the router file, the user will be redirected to that
particular route.

React Router is a standard library system built on top of the React and used to create routing in the
React application using React Router Package. It provides the synchronous URL on the browser
with data that will be displayed on the web page. It maintains the standard structure and behavior
of the application and mainly used for developing single page web applications.

Need of React Router

React Router plays an important role to display multiple views in a single page application.
Without React Router, it is not possible to display multiple views in React applications. Most of
the social media websites like Facebook, Instagram uses React Router for rendering multiple
views.

React Router Installation

React contains three different packages for routing. These are:

1. react-router: It provides the core routing components and functions for the React
Router applications.
react-router-native: It is used for mobile applications.

react-router-dom: It is used for web applications design.

ack Developmen
Page

Department of CSE

It is not possible to install react-router directly in your application. To use react routing, first, you
need to install react-router-dom modules in your application. The below command is used to install
react router dom.

1. $ npm install react-router-dom --save

Components in React Router

There are two types of router components:

e <BrowserRouter>: It is used for handling the dynamic URL.

e <HashRouter>: It is used for handling the static request.

Example

Step-1: In our project, we will create two more components along with App.js, which is already
present.

About.js

import React from "react’
class About extends React.Component {
render() {
return <h1>About</h1>
}
}

export default About

Full Stack Development
Page

Department of CSE

import React from ‘react’
class About extends React.Component {
render() {
return <h1>About</h1>
}
}

export default About

Contact.js

import React from 'react’

class Contact extends React.Component {

render() {

return <hl1>Contact</h1>

¥

export default Contact

Full Stack Developmen
Page

Department of CSE

import React from ‘react’
class App extends React.Component {
render() {
return (
<div>
<h1>Home</h1>

</div>

by

export default App

Step-2: For Routing, open the index.js file and import all the three component files in it. Here, you
need to import line: import { Route, Link, BrowserRouter as Router } from 'react- router-
dom® which helps us to implement the Routing. Now, our index.js file looks like below.

What is Route?

It is used to define and render component based on the specified path. It will accept components
and render to define what should be rendered.

Index.js

import React from 'react’;
import ReactDOM from 'react-dom’;
import { Route, Link, BrowserRouter as Router } from 'react-router-dom'

import "/index.css",

ack Developmen
Page

Department of CSE

import App from "./App';
import About from '"./about'

import Contact from'./contact’

const routing = (
<Router>
<div>
<h1>React Router Example</h1>
<Route path="/" component={App} />
<Route path="/about" component={About} />
<Route path="/contact” component={Contact} />
</div>
</Router>

)

ReactDOM.render(routing, document.getElementByld('root"));

Step-3: Open command prompt, go to your project location, and then type npm start. You will
get the following screen.

< C | @ localhost

React Router Example

Home

Now, if you enter manually in the browser: localhost:3000/about, you will see About
component is rendered on the screen.

Full Stack Development
Page

Department of CSE

& C | ® localhost:

React Router Example
Home

About

Step-4: In the above screen, you can see that Home component is still rendered. It is because the
home path is /' and about path is '/about’, so you can observe that slash is common in both paths
which render both components. To stop this behavior, you need to use the exact prop. It can be
seen in the below example.

Index.js

import React from 'react’;

import ReactbOM from 'react-dom’;

import { Route, Link, BrowserRouter as Router } from 'react-router-dom'
import "./index.css'";

import App from'./App’;

import About from "./about'

import Contact from'./contact’

const routing = (

<Router>
<div>
<h1>React Router Example</h1>
<Route exact path="/" component={App} />
<Route path="/about" component={About} />

<Route path="/contact” component={Contact} />

Full Stack Developmen
Page

Department of CSE

</div>

</Router>

)

ReactDOM.render(routing, document.getElementByld(‘root"));

Output

s C | @ localhost

React Router Example

About

Adding Navigation using Link component

Sometimes, we want to need multiple links on a single page. When we click on any of that
particular Link, it should load that page which is associated with that path without reloading the
web page. To do this, we need to import <Link> component in the index.js file.

What is < Link> component?

This component is used to create links which allow to navigate on different URLS and render its
content without reloading the webpage.

Example
Index.js

import React from 'react’,

import ReactDOM from 'react-dom’;

import { Route, Link, BrowserRouter as Router } from 'react-router-dom'
import "./index.css'";

import App from "./App";

import About from './about'

import Contact from'./contact'

ack Developmen
Page

Department of CSE

const routing = (
<Router>
<div>
<h1>React Router Example</h1>

<Link to="/">Home</Link>

<Link to="/about">About</Link>

<Link to="/contact">Contact</Link>

<Route exact path="/" component={App} />

<Route path="/about" component={About} />
<Route path="/contact” component={Contact} />
</div>

</Router>

ack Developmen

Page

Department of CSE

)

ReactDOM.render(routing, document.getElementByld(‘root"));

Output

< C | @ localhost

React Router Example

« Contact

Welcome Home

After adding Link, you can see that the routes are rendered on the screen. Now, if you click on
the About, you will see URL is changing and About component is rendered.

€ C | ® localhost

React Router Example

Welcome to About

Now, we need to add some styles to the Link. So that when we click on any particular link, it can
be easily identified which Link is active. To do this react router provides a new trick NavLink
instead of Link. Now, in the index.js file, replace Link from Navlink and add properties
activeStyle. The activeStyle properties mean when we click on the Link, it should have a specific
style so that we can differentiate which one is currently active.

import React from 'react’;
import ReactDOM from 'react-dom’;

import { BrowserRouter as Router, Route, Link, NavLink } from 'react-router-dom'’

import './index.css";

import App from "./App’;
import About from './about’

import Contact from"./contact’

Full Stack Developmen
Page

Department of CSE

const routing = (
<Router>
<div>
<h1>React Router Example</h1>

<NavLink to="/" exact activeStyle={
{color:'red}
}>Home</NavLink>

<NavLink to="/about" exact activeStyle={

{color:'green’}

}>About</NavLink>

<NavLink to="/contact" exact activeStyle={
{color:'magenta’}
}>Contact</NavLink>

ack Developmen

Department of CSE

<Route exact path="/" component={App} />
<Route path="/about" component={About} />
<Route path="/contact” component={Contact} />
</div>
</Router>

)

ReactDOM.render(routing, document.getElementByld(‘root"));

Output

When we execute the above program, we will get the following screen in which we can see that
Home link is of color Red and is the only currently active link.

€ C | ® localhost

React Router Example

Welcome Home

Now, when we click on About link, its color shown green that is the currently active link.

L5 C | ® localhost

React Router Example

Welcome to About

<Link> vs <NavLink>

The Link component allows navigating the different routes on the websites, whereas NavLink
component is used to add styles to the active routes.

Benefits Of React Router

The benefits of React Router is given below:

Full Stack Developmen
Page

Department of CSE

In this, it is not necessary to set the browser history manually.

Link uses to navigate the internal links in the application. It is similar to the anchor tag.
It uses Switch feature for rendering.

The Router needs only a Single Child element.

In this, every component is specified in .

React Forms

Forms are an integral part of any modern web application. It allows the users to interact with the
application as well as gather information from the users. Forms can perform many tasks that
depend on the nature of your business requirements and logic such as authentication of the user,
adding user, searching, filtering, booking, ordering, etc. A form can contain text fields, buttons,

checkbox, radio button, etc.

Creating Form

React offers a stateful, reactive approach to build a form. The component rather than the DOM
usually handles the React form. In React, the form is usually implemented by using controlled

components.

There are mainly two types of form input in React.

1. Uncontrolled component

2. Controlled component

Uncontrolled component

The uncontrolled input is similar to the traditional HTML form inputs. The DOM itself handles
the form data. Here, the HTML elements maintain their own state that will be updated when the
input value changes. To write an uncontrolled component, you need to use a ref to get form values
from the DOM. In other words, there is no need to write an event handler for every state update.

You can use a ref to access the input field value of the form from the DOM.

ack Developmen
Page

Department of CSE

Example

In this example, the code accepts a field username and company name in an uncontrolled

component.

import React, { Component } from 'react’;
. class App extends React.Component {
constructor(props) {
super(props);
this.updateSubmit = this.updateSubmit.bind(this);
this.input = React.createRef();7.
}
updateSubmit(event) {
alert("You have entered the UserName and CompanyName successfully.");
10. event.preventDefault();
11. }
12. render() {
13. return (
14, <form onSubmit={this.updateSubmit}>
15. <h1>Uncontrolled Form Example</h1>
16. <label>Name:
17. <input type="text" ref={this.input} />
18. </label>
19. <label>
20. CompanyName:
21. <input type="text" ref={this.input} />
22. </label>

23. <input type="submit" value="Submit" />

24. </form>
25.);
26. }

ack Developmen
Page

Department of CSE

27.}
28. export default App;

Output

When you execute the above code, you will see the following screen.

C | @ localhost

Uncontrolled Form Example

Name: CompanyName: | Submit |

After filling the data in the field, you get the message that can be seen in the below screen.

C | ® localhost

localhost:8080 says
Uncontrolled Form Example

You have entered the UserName and CompanyName

successfully.
Name: Abhishek CompanyName:|JavaTpoint ¥

Controlled Component

In HTML, form elements typically maintain their own state and update it according to the user
input. In the controlled component, the input form element is handled by the component rather
than the DOM. Here, the mutable state is kept in the state property and will be updated only with
setState() method.

Controlled components have functions that govern the data passing into them on every onChange
event, rather than grabbing the data only once, e.g., when you click a submit button. This data is
then saved to state and updated with setState() method. This makes component have better control

over the form elements and data.

A controlled component takes its current value through props and notifies the changes through
callbacks like an onChange event. A parent component "controls™ this changes by handling the
callback and managing its own state and then passing the new values as props to the controlled

component. It is also called as a "dumb component."

Full Stack Development
Page

Department of CSE

Example

import React, { Component } from 'react’;
. class App extends React.Component {
constructor(props) {
super(props);
this.state = {value: "};
this.handleChange = this.handleChange.bind(this);
this.handleSubmit = this.handleSubmit.bind(this);8.
}
9. handleChange(event) {
10. this.setState({value: event.target.value});
11.}
12. handleSubmit(event) {

13. alert("You have submitted the input successfully: ' + this.state.value);

14. event.preventDefault();

15. }

16. render() {

17. return (

18. <form onSubmit={this.handleSubmit}>

19. <h1>Controlled Form Example</h1>

20. <label>

21. Name:

22. <input type="text" value={this.state.value}
onChange={this.handleChange} />

23. </label>

24. <input type="submit" value="Submit" />

25. </form>

26.);

27.}

28.}

ack Developmen
Page

Department of CSE

29. export default App;

Output

When you execute the above code, you will see the following screen.

C | @ localhost

Controlled Form Example

Name: Submit

After filling the data in the field, you get the message that can be seen in the below screen.

C | © localhost

localhost:8080 says
Controlled Form Example !

You have submitted the input successfully: JavaTpoint

Name: JavaTpoint Submit

Architecture of the React Application

React library is just Ul library and it does not enforce any particular pattern to write a complex
application. Developers are free to choose the design pattern of their choice. React community
advocates certain design pattern. One of the patterns is Flux pattern. React library also provides
lot of concepts like Higher Order component, Context, Render props, Refs etc., to write better
code. React Hooks is evolving concept to do state management in big projects. Let us try to

understand the high level architecture of a React application.

Full Stack Development

Page

Department of CSE

React App

Root Component

React thrid party component

Router management
(React Router)

React Animation
(React-transition-group, react-animations,
React Reveal, etc..)

React Advanced state management
(Redux. MobX. Recoil, etc..)

React REST API management
(TJavaScript Fetch, Axios, etc..)

React app starts with a single root component.

Root component is build using one or more component.

Each component can be nested with other component to any level.
Composition is one of the core concepts of React library. So, each component is
build by composing smaller components instead of inheriting one component
from another component.

Most of the components are user interface components.

React app can include third party component for specific purpose such as

routing, animation, state management, etc.

ack Developmen

Page

Department of CSE MRCET

Unit-3
Angular

1. Getting Started with Angular

2. Angular App From Scratch

3. Components

4. Properties, Events & Binding with ngModel
5. Fetch Data from a Service

6. Submit data to service

7. http module

8. observables

9. Routing

1. Getting Started with Angular

a.Defination:-

Angular is an open-source web application framework maintained by Google and a
community of developers. It is designed to build dynamic and interactive single-page
applications (SPAs) efficiently. With Angular, developers can create robust, scalable, and
maintainable web applications.

(Or)

Angularis an open-source, JavaScript framework written in TypeScript. Google maintains
it, andits primary purpose is to develop single-page applications. As a framework,
Angular has clear advantages while also providing a standard structure for developers to
work with. It enables usersto create large applications in a maintainable manner.

Page 107

https://www.simplilearn.com/tutorials/javascript-tutorial/introduction-to-javascript
https://www.simplilearn.com/tutorials/typescript-tutorial/typescript-interview-questions

In 2
Mot
and

Department of CSE MRCET
b. History
Angular, initially released in 2010 by Google, has undergone significant transformations
over the years. The first version, AngularJS, introduced concepts like two-way data binding
and directives. However, as web development evolved, AngularJS faced limitations in terms
of performance and flexibility.

2016, Angular 2 was released, which was a complete rewrite of AngulardS, focusing on
dJularity and performance. Since then, Angular has continued to evolve, with regular updates
improvements to meet the demands of modern web development.

c. Why Angular?

JavaScript is the most commonly used client-side scripting language. It is written into HTML
documents to enable interactions with web pages in many unique ways. As a relatively easy-
to- learn language with pervasive support, it is well-suited to develop modern applications.
But is JavaScript ideal for developing single-page applications that require modularity,
testability, and developer productivity? Perhaps not.

These days, we have a variety of frameworks and libraries designed to provide alternative
solutions.With respect to front-end web development, Angular addresses many, if not all, of
the issues developers face when using JavaScript on its own.

d.Here are some of the features of Angular
1. Custom Components

Angular enables users to build their components that can pack functionality along with
renderinglogic into reusable pieces.

2. Data Binding

Angular enables users to effortlessly move data from JavaScript code to the view, and
react touser events without having to write any code manually.

3. Dependency Injection

Angular enables users to write modular services and inject them wherever they are neede
Thisimproves the testability and reusability of the same services.

4. Testing
Tests are first-class tools, and Angular has been built from the ground up with testability

in mind.You will have the ability to test every part of your application—which is highly
recommended.

5. Comprehensive

Angular is a full-fledged JavaScript framework and provides out-of-the-box solutions for
servercommunication, routing within your application, and more.

6. Browser Compatibility

Angular works cross-platform and compatible with multiple browsers. An Angular

application can typically run on all browsers (Eg: Chrome, Firefox) and operating

systems, such as Windows,macOS, and Linux.

7. Two-Way Data Binding: Angular provides seamless synchronization between the

model andthe view, allowing for easy management of user inputs.

8. Directives: Angular offers a rich set of built-in directives for manipulating the DOM, such
nglf, *ngFor*, and *ngSwitch*.

9. Routing: Angular’s powerful routing module enables to build SPAs with multiple
views andnavigation between them.

Page 108

| as

Department of CSE . _ MRCET
10.HTTP Client: Angular includes an HTTP client module for making server

requests,simplifying data fetching and manipulation.
e. Advantages of Angular

« Productivity: Angular’s extensive tooling and ecosystem streamline development
tasks,enabling faster project completion.

« Maintainability: Angular's modular architecture and clear separation of concerns
promotecode organization and maintainability.

« Scalability: Angular is well-suited for building large-scale applications, thanks
to itscomponent-based architecture and robust performance.

« Community Support: Being backed by Google and a vast community of developers,
Angularenjoys strong community support and continuous improvement.
f. Disadvantages of Angular

. Learning Curve: Angular has a steep learning curve, especially for beginners,
due to itscomplex concepts and extensive documentation.

. Performance Overhead: Angular’'s powerful features come with a performance
cost, andpoorly optimized applications may suffer from performance issues.

« Size: Angular applications tend to have larger file sizes compared to other
frameworks, whichmay impact load times, especially on mobile devices.

« Migration: Upgrading between major Angular versions can be challenging and
time-consuming, requiring significant changes to existing codebases.

g.Angular Prerequisites
There are three main prerequisites.

NodedS

Angular uses Node.js for a large part of its build environment. As a result, to get started with
Angular, you willneed to have Node.js installed on your system. You can head to the NodeJS
official website to download the software. Install the latest version and confirm them on you
command prompt by running the following commands:

Node --
versionnpm --

\"

nede

Page 109

https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-nodejs

Department of CSE MRCET
Angular CLI

The Angular team has created a command-line interface (CLI) tool to make it easier to
bootstrap and developyour Angular applications. As it significantly helps to make the
process of development easier, we highly recommend using it for your initial angular
projects at the least.

To install the CLI, in the command prompt, type the following
commandslnstallation:

npm install -g @angular/cli
Confirmation -

ng--version

A

Text Editor

You need a text editor to write and run your code. The most popularly used integrated
development environment (IDE) is Visual Studio Code (VS Code). It is a powerful source
code editor that is available onWindows, macOS, and Linux platforms.

Now, Let’s create our first Angular HelloWorld Application.

2. Angular App From Scratch Creating an Angulal
Application

Step 1: Install Angular CLI: Angular CLI (Command Line Interface) is a powerful tool for
scaffolding and managing Angular applications. Install it globally using npm:

npm install -g @angular/cli
Step 2: Create a New Angular Project: Use Angular CLI to create a new Angular project.
Navigate to the desired directory and run:

ng new my-angular-app //creating standalone application

Page 110

https://www.simplilearn.com/tutorials/angular-tutorial/angular-project
https://www.simplilearn.com/tutorials/angular-tutorial/angular-project

Department of CSE MRCET
(or)
Ng new my-angular-app -standalone false //creating non-standalone application project
structure is different adding two more files app.module.ts and app-routing.module.ts

Step 3: Navigate to the Project Directory: Move into the newly created project directory:
cd my-angular-app

Step 4: Serve the Application: Launch the development server to see your app in action:
ng serve

Folder Structure:

What is angular

Dependencies:

Page 111

Denartment of CSF
"dependencies": {

"@angular/animations":

"*17.3.0", "@angular/common":
"717.3.0", "@angular/compiler":
"*17.3.0", "@angular/core":

"*17.3.0", "@angular/forms":

"*17.3.0",
"@angular/platform-browser": "*17.3.0",
"@angular/platform-browser-dynamic":
"717.3.0", "@angular/router": "*17.3.0",

"rxjs": "~7.8.0",
"tslib™ "*2.3.0",
Example:

</-- app.component.htm/ -->

<h1>Hello Angular</h1>
//app.component.ts

import { Component } from '@angular/core’;
import { RouterOutlet } from '@angular/router’;

@Component({
selector: 'app-root’,
standalone: true,
imports: [RouterOutlet],
templateUrl:
".Japp.component.html', styleUrl:
'./app.component.css'

)

export class AppComponent {
title = 'my-angular-app';

Root HTML - index.html(default code)

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>HelloWorld</title>

<base href="/">

MRCFT

Page 112

Department of CSE _ _ _ o MRCET
<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="icon" type="image/x-icon" href="favicon.ico">

Page 113

Department of CSE MRCET
</head>

<body>
<app-root></app-root>

</body>

</html|>

The only main thing in this file is the <app-root> element. This is the marker for loading the
application. All the application code, styles, and inline templates are dynamically injected into
the index.html file at run time bythe ng serve command.

Output:
Upon running "ng serve’, the Angular CLI will compile the application and launch a
development server. Open a web browser and navigate to "http://localhost:4200" to
view theapplication running locally.

C @® localhost:4200

Hello Angular

Page 114

Department of CSE MRCET

2. Component:-

What Are Angular components?

Logo component

N M Gmail
Sign-in
component
Get more done with
Gmail
5 Image
and screen sharing for up to 100 component

AR

Create-account
component

The above image showing Gmail is a Single Page Application each part consider like a
component like logo component, sign-in component etc.,

Defination:-

The component is the basic building block of Angular. It has a selector, template, style, and
otherproperties, and it specifies the metadata required to process the component.

Importing the component decorator

{ Component } fi 4
from angular core library

@Component ({

selector: ‘a ko ' . Decorating the class with @Component
templateurl: './app.com nt.html decorator and providing the metadata

styleUrls: |
})

Creating class to define data and logic for
the view

parts of an Angular Component

An Angular component has several parts, such as:

Page 115

Department of CSE MRCET
Selector

It is the CSS selector that identifies this component in a template. This corresponds to the
HTML tag that is included in the parent component. You can create your own HTML tag.
However, the same has to be includedin the parent component.

Template

It is an inline-defined template for the view. The template can be used to define some
markup. The markupcould typically include some headings or paragraphs that are
displayed on the UI.

TemplateUrl

It is the URL for the external file containing the template for the view.

Styles

These are inline-defined styles to be applied to the component’s view

styleUrls

List of URLSs to stylesheets to be applied to the component’s view.

Before Creating Angular Component create Angular Project using this
commandng new Projectname or na new projectname -standalone false

Creating a Component in Angular 8:
To create a component in any angular application, follow the below steps:

« Get to the angular app via your terminal.(ng new project_name)
« Create a component using the following command:

nggc
<component_name>OR

ng generate component <component_name>

« Following files will be created after generating the component:
Note:-write below picture four files in exam important to explaining component

Page 116

https://www.simplilearn.com/tutorials/html-tutorial/html-tags

Microsoft Windows [Version 10.0.18362.1082]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\hp\demo>ng g c gfg

CREATE src/app/gfg/gfg.component.html (18 bytes)
CREATE src/app/gfg/gfg.component.spec.ts (607 bytes)
CREATE src/app/gfg/gfg.component.ts (263 bytes)
CREATE src/app/gfg/gfg.component.css (@ bytes)
UPDATE src/app/app.module.ts (363 bytes)

C:\Users\hp\demo>(]

Using a component in Angular 8:
« Go to the component.html file and write the necessary HTML code.

gfg.component.html:

<h1>GeeksforGeeks</h1>

« Go to the component.css file and write the necessary CSS code.

gfg.component.css:

h1{
color: green;
font-size:
30px;

}
« Write the corresponding code in component.ts file.

gfg.component.ts:

import { Component, Onlnit } from

@Component({

selector: 'app-

MRCET

Page 117

templateUr!:
'./gfg.component.html',styleUrls:

['./gfg.component.css']

)

export class
GfgComponent{a

="GeeksforGeeks";

« Run the Angular app using ng serve -

openOutput:

< C @ localhost:4200

GeeksforGeeks

Page 118

Department of CSE MRCET

4. Properties, Events & Binding with ngModel

Data Binding

Data binding is the core concept of Angular 8 and used to define the communication between
a component and the DOM. It is a technique to link your data to your view layer. In simple words,
you can say that data binding isa communication between your typescript code of your
component and your template which user sees. It makeseasy to define interactive applications
without worrying about pushing and pulling data.

Data binding can be either one-way data binding or two-way data binding.

One-way databinding

One way databinding is a simple one way communication where HTML template is changed
when we make changes in TypeScript code.

Or

In one-way databinding, the value of the Model is used in the View (HTML page) but you can't
update Model from the View. Angular Interpolation / String Interpolation, Property Binding, and
Event Binding are the exampleof one-way databinding.

Two-way databinding

In two-way databinding, automatic synchronization of data happens between the Model and
the View. Here, change is reflected in both components. Whenever you make changes in the
Model, it will be reflected in the View and when you make changes in View, it will be reflected
in Model.

This happens immediately and automatically, ensures that the HTML template and the
TypeScript code are updated at all times.

TypeScript Code Output Data
HTML Template

(Business Logic)
Users Reaction

Angular provides four types of data binding and they are different on the way of data flowing.

o String Interpolation

o Property Binding

Page 119

https://www.javatpoint.com/data-binding-in-angular-8#StringInterpolation
https://www.javatpoint.com/data-binding-in-angular-8#PropertyBinding

a > o npoe

=
~
o

N

Int

Department of CSE MRCET
o Event Binding

o Class binding
o Style binding

Two-way binding

One way Data Binding:-

1. String Interpolation

2. Property Binding

3. Event Binding
4. Class binding

5. Style binding

1.String Interpolation

String Interpolation is a one-way databinding technique which is used to output the data from a
TypeScript codeto HTML template (view). It uses the template expression in double curly
braces to display the data from the component to the view. String interpolation adds the value
of a property from the component.

For example:

{{ data }}

We have already created an Angular project using
Angular CLI.Here, we are using the same project for
this example.

Open app.component.ts file and use the following code within the file:

import { Component } from '@angular/core’;
@Component({
selector: 'app-root’,
templateUrl: './app.component.html’,
styleUrls:

.Japp.component.css']6. })

export class AppComponent {
title = 'Data binding example using String
erpolation’;9. }

Page 120

https://www.javatpoint.com/data-binding-in-angular-8#EventBinding
https://www.javatpoint.com/data-binding-in-angular-8#Two-wayBinding
https://www.javatpoint.com/data-binding-in-angular-8#StringInterpolation
https://www.javatpoint.com/data-binding-in-angular-8#PropertyBinding
https://www.javatpoint.com/data-binding-in-angular-8#EventBinding

Department of CSE

File Edit Selection View Go Debug Terminal Help app.component.ts - Untitled (Workspace) - Visual Studio Code

app.componentis X
4 UNTITLED (WORKSPACE) angular8d ing b src b app b
/O 4 angular8databinding import { Component } fr

b e2e
@Component ({

? b node_modules Tact :
selector: 'app-roc
4
A templateurl: '

een styleUrls: ['./app.component
app-routing.module.ts

app.component.css
[.] app.component.html
TS app.component.spec.ts
app.component.ts
app.module.ts
b assets
b environments
% favicon.ico
index.html
main.ts
¢ polyfills.ts

b OUTLINE
QoA0 Ln10,Col4 Spaces:2 UTF-8 LF TypeSaipt 352 @ A

Now, open app.component.html and use the following code to see string interpolation.

<h2>

{{ title }}
</h2>

File Edit Selection View Go Debug Terminal Help app.componenthtml - Untitled (Workspace) - Visual Studio Code

EXPLORER app.component.ts app.componenthtml X
4 UNTITLED (WORKSPACE) angular8databinding b src » app * app.component.html b .,
4 angular8databinding

b e2e

{ title }}

» node_modules

4 s1C

4 app
app-routing.module.ts
app.component.css
app.component.html

TS app.component.spec.ts
app.component.ts
app.module.ts

b assets

b environments

% favicon.ico
index.html

main.s

ﬁ polyfills:its

b OUTLINE
Qo0Ao0 (n3,Col9 Spaces?2 UTF8 IF HIML @ A

Page 121

Department of CSE MRCET

Now, open Node.js command prompt and run the ng serve command to see the result.

Page 122

Department of CSE MRCET
Output:

ADVERTISEMENT

1} Angularfdatabinding X +

<« C @ localhost4200 2 B @

Data binding example using String Interpolation

String Interpolation can be used to resolve some other expressions too. Let's see an example.

Example:

Update the app.component.ts file with the following code:

import { Component } from '@angular/core’;
@Component({
selector: 'app-root’,

templateUrl: "./app.component.html’,

a > e

styleUrls:

—2
~
o

Japp.component.css']6. })
export class AppComponent {

title = 'Data binding example using String Interpolation’;

© © N

numberA: number = 10;

10, numberB: number = 20;

}

—
—

app.component.htmil:

1. | <h2>Calculation is : {{ numberA + numberB }}</h2>

Output:

Page 123

—2

o > wnoe

© © N

~

o

Denartment of CSF MRCET

) Angularfdatabinding e +

& C @® localhost:4200 % £ B @

Calculation is : 30

2. Property Binding in Angular 8

Property Binding is also a one-way data binding technique. In property binding, we bind a
property of a DOMelement to a field which is a defined property in our component TypeScript
code. Actually Angular internally converts string interpolation into property binding.

For example:

Property binding is preferred over string interpolation because it has shorter and cleaner code
String interpolationshould be used when you want to simply display some dynamic data from a
component on the view between headings like h1, h2, p etc.

Note: String Interpolation and Property binding both are one-way binding. Means, iIf field value in the
componentchanges, Angular will automatically update the DOM. But any changes in the DOM will not be
reflected back in the component.

Property Binding Example

Open app.componnt.ts file and add the following code:

import { Component } from '@angular/core’;
@Component({
selector: 'app-root’,
templateUrl: "./app.component.html’,
styleUrls:

Japp.component.css']6. })

export class AppComponent {
title = "Data binding using Property Binding";

imgUrl="https://static.javatpoint.com/tutorial/angular7/images/angular-7-logo.png";

Page 124

10

Department of CSE

MRCET

125

Department of CSE MRCET
File Edit Selection View Go Debug Terminal Help app.component.ts - Untitled (Workspace) - Visual Studio Code

@ R app.componentis X
4 UNTITLED (WORKSPACE)

p 4 anqular8databinding

b e2e
@Component ({

? » node_modules e ! ;
selector: ‘app-root
4
S templateUrl:

4 app styleUrls: ['./a
app-routing.module.ts !

app.component.css

[.] app.component html

TS app.component.spec.ts
app.component.s
app.module.ts

b assets

b environments

% favicon.ico
index.html

main.ts

ﬁ polyfills.ts

b OUTLINE

Q0A0 In11,Col4 Spaces2 UTF-8 LF TypeScript 352 @ A

Now, open app.component.html and use the following code for property binding:

<h2>{{ title }}</h2> <!-- String Interpolation -->
 <!-- Property Binding -->

Page 126

Department of CSE MRCET

File Edit Selection View Go Debug Terminal Help app.componenthtml - Untitled (Workspace) - Visual Studio Code

@ 2 R pp.component.ts app.componenthtml X
4 UNTITLED (WORKSPACE)
p 4 angular8databinding . {{ title }}

b ede o [src]=

? » node_modules
4 5C
4 app

app-routing.module.ts

app.component.css

[.1 app.component.html

&l
TS app.component.spec.ts

app.component.ts
app.module.ts
b assets
b environments
% favicon.ico
indexhtml
main.ts
polyfills.ts
ﬁ b OUTLINE
QoAo In2,Col51 Spacess2 UTF-8 LF HIML @ A

Page 127

Department of CSE MRCET
Run the ng serve command and open local host to see the result.

Output:

= O X
) Angular8databinding X +
&« C @ localhost:4200 o 2 (M) 9

Data binding using Property Binding

Event Binding in Angular 8

In Angular 8, event binding is used to handle the events raised from the DOM like button click,
mousemove etc. When the DOM event happens (eg. click, change, keyup), it calls the specified
method in the component. In the following example, the cookBacon() method from the
component is called when thebutton is clicked:

For example:

. |<button (click)="cookBacon()"> </button>

Event Binding Example

Let's take a button in the HTML template and handle the click event of this button. To implement
eventbinding, we will bind click event of a button with a method of the component.

Now, open the app.component.ts file and use the following code:

Backward Skip 10sPlay VideoForward Skip 10s

. | import { Component } from '@angular/core’;
@Component({

Page 128

Department of CSE MRCET
selector: 'app-root’,

templateUrl: './app.component.html’,

styleUrls: ['./app.component.css']

Page 129

- =2 v o N o

- O

Department of CSE MRCET
)

export class AppComponent {
onSave($event){

console.log("Save button is clicked!", $event);

File Edit Selection View Go Debug Terminal Help app.companent.s - Untitled (Workspace) - Visual Studio Code

app.componentis X

4 UNTITLED (WORKSPACE)
4 angular8databinding

b e2e
¥ I
b node_modules @Component(t‘
? selector: 'app

4
e templateUrl: '

4 app styleUrls: [
app-routing.module:ts !

app.component.css

[.] app.componenthtml

TS app.component.spec.ts icked!”, $event);

app.component.ts
app.module.ts

b assets

b environments

% favicon.ico
index.html

main.ts

polyfills.ts

b OUTLINE

QoA0 n12,Col4 Spaces2 UTF-8 LF TypeScipt 352 @ A

app.component.htmil:

<h2> Event Binding Example</h2>

<button (click)="onSave($event)">Save</button> <!--Event Binding-->

Page 130

Department of CSE

File Edit Selection View Go Debug Terminal Help app.componenthtml - Untitled (Workspace) - Visual Studio Code

@ RER app.component.ts app.componenthtml X
4 UNTITLED (WORKSPACE)
p 4 angular8databinding 2> Event Binding Example

b ede (click)="onS

» node_modules
? 4 s1C
4 app

app-routing.module:ts

app.component.css

[l K app.component.html
TS app.component.spec.ts

app.component.s
app.module.ts
b assets

b environments

% favicon.ico
indexhtml
main.ts
Q polyfills.ts
b OUTLINE
QoA0 In2,Col68 Spaces?2 UTF8 LF HIML @ A
Output:
= O *
) AngularBdatabinding bt +
& C @ localhost4200 % 2 B & :

Event Binding Example

Save

Click on the "Save" button and open console to see result.

Page 131

Denartment of CSF MRCET

o S E
) Angular@databinding X +
& C @ localhost:4200 sy & O @
[ﬂ Elements Ceonscle Sources Network » A 1 i X
E" ent M © top Y @ | Filter Default levels ¥ o !
I;ill(lillg; » Bartender API access denied. content page.js:2615 ¥
= [WDS] Live Reloading enabled. client:52
Example e
Save button is clicked! P MouseEvent 2pp.component.ts: 19
r— Save button is clicked! P MouseEvent app.component.ts:10
| Save |
P—— >
v

Now, you can see that the "Save" button is clicked.

4. Class Binding

Last Updated : 23 Sep, 2020

Class binding in Angular makes it very easy to set the class property of a view element.
We can set or remove the CSS class names from an element’s class attribute with the
help of class binding.We bind a class of a DOM element to a field that is a defined
property in our Typescript Code. Its syntax is like that of property binding.

Syntax:
<element [class] = "typescript property">

Approach:
« Define a property element in the app.component.ts file.
« In the app.component.html file, set the class of the HTML element by assigning the
propertyvalue to the app.component.ts file’s element.
Example 1: Setting the class element using class binding.

app .component.html
HTML

<hl [class] = "geeky">
GeeksforGeeks
</hl>

Upper Heading's class is : "{{ g[0O].className }}"

app . component. ts

Javascript

Page 132

Department of CSE MRCET

import { Component, OnInit } from '@angular/core';

@Component ({
selector: 'app-root',

templateUrl: './app.component.html'

})
export class AppComponent {
geeky = "GeekClass";

g = document.getElementsByClassName (this.geeky) ;

Output:
GeeksforGeeks

Upper Heading's class is : "GeekClass”

5.Style Binding
Last Updated : 14 Sep, 2020

8.
It is very easy to give the CSS styles to HTML elements using style binding in Angular 8.
Style binding is used to set a style of a view element. We can set the inline styles of an
HTML elementusing the style binding in angular. You can also add styles conditionally
to an element, hence creating a dynamically styled element.

Syntax:
<element [style.style-property] =

style-value'">

Example
1:
app . compo
nent.html

Page 133

Department of CSE

HTML

MRCET

Page 134

<hl [style.color] = "'green'"
[style.text-align] = "'center'" >
GeeksforGeeks

</hl>

Output:
GeeksforGeeks

b. Two way Data Binding using ngmodel

We have seen that in one-way data binding any change in the template (view) were not be
reflected inthe component TypeScript code. To resolve this problem, Angular provides two-way
data binding. Thetwo-way binding has a feature to update data from component to view and
vice-versa.

In two-way databinding, automatic synchronization of data happens between the Model and
the View.Here, change is reflected in both components. Whenever you make changes in the
Model, it will be reflected in the View and when you make changes in View, it will be reflected
in Model.

This happens immediately and automatically, ensures that the HTML template and the
TypeScript codeare updated at all times.

In two way data binding, property binding and event binding are combined together.

Syntax:

. |l(ngModel)] = "[property of your component]"

Note: For two way data binding, we have to enable the ngModel directive. It depends upon
FormsModule in angular/forms package, so we have to add FormsModule in imports[] array in the
AppModule.

TypeScript Code Output Data
HTML Template
(Business Logic)

Users Reaction

Let's take an example to understand it better.

Page 135

Department of CSE
Note:-when you are using ngmodel import FormsModule

MRCET

136

© o N o v A~ W=

10

12
13
14
15

Department of CSE

Property Binding Event Binding

[ngModel] @ (ngModelChange)

Two-way binding

[(ngModel)]

[property binding] + (event binding) = [(property)]

[text] + (textChange) = [(text)]

Open your project's app.module.ts file and use the following code:

import { BrowserModule } from ‘@angular/platform-browser;
import { NgModule } from '@angular/core’;
import {FormsModule} from '@angular/forms’;
import { AppComponent } from './app.component’;
@NgModule({
declarations: [
AppComponent
I,
imports: [
BrowserModule,
FormsModule
],
providers: [],
bootstrap: [AppComponent]
)

MRCET

Page 137

16

Department of CSE

export class AppModule { }

MRCET

138

© © N o Vv A~ W=

Department of CSE MRCET

File Edit Selection View Go Debug Terminal Help app.module.ts - Untitled (Workspace) - Visual Studio Code

app.modulets X

4 UNTITLED (WORKSPACE) @ a
4 angular8databinding ort { BrowserModule } f{
{ NgModule } fr

» node_modules {FormsModule}

? - ort { AppComponent }
e @NgModule({
Heern declarations: [

app-routing.modules AppComponent

app.component.css 1s

b e2e

app.component.html imports: [

TS app.component.spects Browsertodule,

FormsModule
I
providers: [],
b assets bootstrap: [AppComponent]
b environments

app.component.ts

app.module.ts

% favicon.ico
index.html

ETR L

a polyfills:ts

b OUTLINE
Qo0Ao0 In16,Col28 Spaces:2 UTF-8 LF TypeScipt 352 @ A\

app.component.ts file:

import { Component } from "@angular/core";
@Component({
selector: "app-root",
templateUrl: "./app.component.html",
styleUrls: ["./app.component.css"]
)
export class AppComponent {

fullName: string = "Hello JavaTpoint";

Page 139

Department of CSE

File Edit Selection View Go Debug Terminal Help app.component.ts - Untitled (Workspace) - Visual Studio Code

EXPLORER app.componentis X

4 UNTITLED (WORKSPACE) u ing b s

p 4 angular8databinding port { Component } fron

b ede @Component ({
? b node_modules iele?:r‘; l“

emplateUrl:
4 src 2 W
styleUrls: ["./app.component.css
4 app

app-routing.module.ts export

app.component.css fullName: string

[.3 app.component.html } I

TS app.component.spec.ts
app.component.ts
app.module.ts

b assets

b environments

% favicon.ico
index.html
ETRG
Q polyfills.ts

b OUTLINE

QoAo In9,Col4 Spacess2 UTF-8 LF TypeScipt 352 @ A

app.component.html file:

<h2>Two-way Binding Example</h2>
<input [(nhgModel)]="fullName" />

<p> {{fullName}} </p>

File Edit Selection View Go Debug Terminal Help app.componenthtml - Untitled (Workspace) - Visual Studio Code

EXPLORER app.component.ts app.componenthtml X

4 UNTITLED (WORKSPACE) angular8d ’ > Src b app b app.componenthtml » .,
4 angular8databinding 2>Two-way Binding Example
[(ngModel)]="fulll
{{fullName}} |

b e2e
b node_modules
4 s1C
4 app
app-routing.modules
app.component.css
app.component.html
TS app.component.spec.ts
app.component.s
app.module.ts
b assets
b environments
% favicon.ico
index.html
main.ts
polyfills.ts
¢ b OUTLINE
QoA0 In3,Col23 Spaces4 UTF8 LF HIML @ A

Now, start your server and open local host browser to see the result.

Page 140

Output:

Department of CSE

MRCET

Page 141

Denartment of CSF

ﬂ Angular@databinding * +

< ¢ @ localhost:4200

Two-way Binding Example

/

Hello JavaTpoint

Hello JavaTpoint \

Here, you can see that changing textbox
values update property value in
component.

Fetched value from component

You can check it by changing textbox value and it will be updated in component as well.

For example:

ﬂ AngularBdatabinding b +

< C @ localhost:4200

Two-way Binding Example

Hello Ajest

Hello Ajeet

Page 142

Department of CSE

Parent Component

modelValue modelValue=Sevent

A

Data flow @input @Output

v

[text] (textChange)

Child Component

(OR)

Without using ngmodel

[property binding] + (event binding) = [(property)]

app.component.html

<label>User Name</label>

<input type="text" [value]="text" (input)="updateValue
($event)">

<h1>{{text}}</h1>

app.component.ts

fullName: string = "Hello JavaTpoint";

Angular Directives

MRCET

Notified Event
with Data

Page 143

Department of CSE MRCET
The Angular 8 directives are used to manipulate the DOM. By using Angular directives, you can

changethe appearance, behavior or a layout of a DOM element. It also helps you to extend
HTML.

Page 144

Denartment of CSF MRCET

Manlpulatlon

A
Al
\\
’ .
’ Al
’ .
A

’ Ay
’ A
m

Angular 8 Directive

Angular 8 directives can be classified in 3 categories based on how they behave:

o Component Directives
o Structural Directives

o Attribute Directives

Component Directives: Component directives are used in main class. They contain the detail
of howthe component should be processed, instantiated and used at runtime.

Structural Directives: Structural directives start with a * sign. These directives are used to
manipulateand change the structure of the DOM elements. For example, *nglf directive,
*ngSwitch directive, and

*ngFor directive.

o *nglf Directive: The nglf allows us to Add/Remove DOM Element.

o *ngSwitch Directive: The *ngSwitch allows us to Add/Remove DOM Element. It is similar to switch

statement of C#.

o *ngFor Directive: The *ngFor directive is used to repeat a portion of HTML template once per each item

from an iterable list (Collection).

Attribute Directives: Attribute directives are used to change the look and behavior of the
DOMelements. For example: ngClass directive, and ngStyle directive etc.

o ngClass Directive: The ngClass directive is used to add or remove CSS classes to an HTML element.

o ngStyle Directive: The ngStyle directive facilitates you to modify the style of an HTML element using the

expression. You can also use ngStyle directive to dynamically change the style of your HTML element.

Page 145

Department of CSE MRCET

5. Fetch Data from a Service

What is the Need for Angular Services?

We’re sure you are aware of the concept of components in Angular. The user interface of
the application isdeveloped by embedding several components into the main component.

Logo component

\ M Gmail [:I
\ Sign-in
component
Get more done with
Gmail
(;\Image
" w component

peop le Meet in Gmail
L < 3 &
Ee] arae

V-

Create-account
component

However, these components are generally used only for rendering purposes. They are only
used to define whatappears on the user interface. Ideally, other tasks, like data and image
fetching, network connections, databasemanagement, are not performed. Then how are
these tasks achieved? And what if more than one component performs similar tasks? Well,
Services take care of this. They perform all the operational tasks for the components.

Services avoid rewriting of code. A service can be written once and injected into all the
componentsthat use that service

o A service could be a function, variable, or feature that an application needs

What Are Angular Services?

Angular services are objects that get instantiated just once during the lifetime of an
application. They containmethods that maintain data throughout the life of an application,

i.e., data is available all the time.

Page 146

https://www.simplilearn.com/tutorials/angular-tutorial/angular-components
https://www.simplilearn.com/tutorials/programming-tutorial/coding-for-beginners

Department of CSE

MRCET

N

Service

The main objective of a service is to organize and share business logic, models, or data and
functions with different components of an Angular application. They are usually

implemented through dependency injection.

Features of Angular Services

Services in Angular are simply typescript classes with the @injectible decorator. This decorator

tells angularthat the class is a service and can be injected into components that need that service.
They can also inject other services as dependencies.

components.These services are used to hold business logic.

As mentioned earlier, these services are used to share a single piece of code across multiple

Services are used to interact with the backend. For example, if you wish to make AJAX calls, you

can havethe methods to those calls in the service and use it as a dependency in files.

L2

|

A Service is a Class

2
aam /!
A A

——
- =]

Interact with the
backend

Decorated with
@Injectibe

il

Share data among
components

They share the same
piece of code

Services are singleton

a=
¢l

Hold the business logic

Registered on modules
or components

Page 147

https://www.simplilearn.com/tutorials/asp-dot-net-tutorial/ajax-in-asp-dot-net

Department of CSE MRCET
« In angular, the components are singletons, meaning that only one instance of a service that gets

created, andthe same instance is used by every building block in the application.

Page 148

Department of CSE MRCET

« A service can be registered as a part of the module, or as a part of the component. To register it
as a part ofthe component, you’ll have to specify it in the providers’ array of the module.

Fetch data from service Example:-

Use this command ng g S service_name
Creating Angular Project Use below Commands

e npm install -g @angular/cli //creating cli

e ng version

e ng new prog9 --standalone false //creating angular project SPA(Single page application)
/lapp component is a default component.

cd prog9

ng g ¢ header //creating header component

ng g ¢ home //creating home component

ng g c profile //creating profile component

ng serve //running angular project

Use this command for creating service Ng g S service_name

Creating body of about, contact, home and header. Header is a navbar this page creating
routerLinks about andcontact. Home is a default link when header loaded it is displayed.
App.module.ts file creating url paths for each page.

Here test.service.ts file is creating for displaying fruits names you can access service data
any component herefetching data service to about.

1)about.component.html:-

<h1>This is About Component</h1>
<h3>Which Fruit You Like?</h3>

<div *ngFor="let m of names">

{{m}}

</div>

About.component.ts:-

import { Component } from
'@angular/core';import { TestService }
from '../test.service'; @Component({
selector: 'app-about’,
templateUrl:
".Jabout.component.html',styleUrl:

Page 149

Department of CSE

'./Jabout.component.css'

)

export class AboutComponent {

constructor(private

ts:TestService){

}

names=this.ts.names;

2) contact.component.html:-

<h1>This is Contact Component</h1>

3)header.component.css:-

ul 1i{

list-style: none;
}
ul li af

text-decoration: none;
}
ul{

display: flex;

justify-content: flex-

start;gap: 20px;

background-color:

aqua;height: 50px;
}
a{

line-

height:50px;

color:black;

MRCET

Page 150

Department of CSE MRCET
margin:0 20px;

font-weight:
bold;font-

size:30px;

4) header.component.html:-

<|i>

Page 151

Department of CSE MRCET
about

contact

5)home.component.html:-

<h1>This is Home Component</h1>

6) notfound.component.html:-

<p>notfound works!</p>

7)app.component.html:-

<app-header></app-header>

<router-outlet></router-outlet>

8)app.module.ts:-

import { AppComponent } from './app.component’;
import { HeaderComponent } from
"./header/header.component’; import {
AboutComponent } from './about/about.component’;
import { ContactComponent } from
"./contact/contact.component’;import {
HomeComponent } from './home/home.component’;
import { NotfoundComponent } from
"./notfound/notfound.component';import {

RouterModule,Routes } from '@angular/router’;

Page 152

Department of CSE MRCET

const routes:Routes=|[

{

path:",component:HomeComponent

12
{

Page 153

Department of CSE MRCET
path:'about',component:AboutComponent

b
{
path:'contact',component:ContactComponent
b
{
path:"™*',component:NotfoundComponent
Y
]

imports: [

RouterModule.forRoot(routes)
1;
Test.service.ts:-

import { Injectable } from '@angular/core’;

@Injectable({
providedIn:
'root'

)
export class TestService {
constructor() { }

names=['Mango','Banana’,'Watermelon','Apple;

}

Output:

Page 154

Department of CSE MRCET

<« c @ localhost:4200/about

M Gmail @@ @B YouTube @ Maps

about Contact

This is About Component

Which Fruit You Like?

Mango
Banana
Watermelon
Apple

Page 155

Department of CSE MRCET

6. Submit data to service:-

npm install bootstrap --save

When Bootstrap is installed open angular.json file and add bootstrap.min.css file
reference under"styles™:

1. "styles": [

2. "src/styles.css",

3. "node_modules/bootstrap/dist/css/bootstrap.min.css"
4.]

Now we need to create components and service. Use the following commands to create the same.

ng g ¢ header
ng g c reg

Note
g stands for generate | ¢ stands for Component | s stands for

ServiceOpen app.modules.ts file and add these lines:

import { NgModule } from '@angular/core’;
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module’;

import { AppComponent } from './app.component';

import { RegComponent } from './reg/reg.component’;

import { HeaderComponent } from './header/header.component’;
import { FormsModule,ReactiveFormsModule } from '@angular/forms’;
import { RouterModule,Routes } from '@angular/router’;

const routes: Routes = [

{ path: "reg", component: RegComponent }

15

imports: [
BrowserModule,
AppRoutingModule,
FormsModule,
ReactiveFormsModule,
RouterModule.forRoot(routes)

In app.component.html replace the existing code with the below code:

Page 156

Department of CSE MRCET
1. <app-header></app-header>

2. <router-outlet> </router-outlet>

Let's start with components now.

Page 157

Department of CSE MRCET
Open header.component.html file and replace with the code below.

create
</1i>

Open header.component.css file and replace with the code below.
ul{
background-color:aqua;

}

Now let's create a function in Service.
Open data.service.ts file and replace with the code below.

1. public SaveEmployee(empdata) {

2. console.log("Full Nam : " + empdata.regFullName);
e

3. console.log("Email Id : " + empdata.regEmail);

4. }

Open reg.component.html file and replace with the code below.

1. <div class="container" style="margin-top: 150px;">

2. <form [formGroup]="frmRegister"
(ngSubmit)="SaveEmployee(frmRegister.valu
e)'>
3. <div class="panel panel-primary">
4. <div class="panel-heading">
5. <h3 class="panel-title">Employee Registration</h3>
6. </div>
7. <div class="panel-body">
8. <div class="form-group">
9. <label for="fullName">Full Name</label>
10. <input id="fullName" formControlIName="regFullName"
type=
"text" class="form-control" required />
11. </div>
12. <div class="form-group">
13. <label for="email">Email</label>
14, <input id="email" formControlIName="regEmail"
type="email
" class="form-control" required />
15. </div>
16. </div>
17. <div class="panel-footer">
18. <button type="submit" class="btn btn-
primary">Save</button>
19. </div>
20. </div>

Page 158

Department of CSE
21. </form>
22. </div>

Open reg.component.ts file and replace with the code below.

1. import {
2. Component,
3. OnlInit

4. } from '@angular/core’;

MRCET

Page 159

Department of CSE
5. import {
6. FormGroup,
7. FormBuilder
8. } from '@angular/forms';
9. import {
10. DataService
11. } from '../data.service';
12. @Component({

13. selector: 'app-reg',
14. templateUrl: './reg.component.html’,
15. styleUrls: ['./reg.component.css']
16. })
17. export class RegComponent implements OnInit {
18. frmRegister: FormGroup;
19. constructor(private _fb: FormBuilder, private dataservice:
{}
20. ngOnInit(): void {
21. this.frmRegister = this. fb.group({
22. regFullName: "",
23. regEmail: ""24.
1)
25. }
26. SaveEmployee(value) {
27. this.dataservice.SaveEmployee(value);
28. }
29. }

Now build your application by ng

build.Run application by ng serve.

Output:-

Employee Registration

Full Name & Devools - localhost:4100/reg
Ashok (x ol Elements Console Sources Metwork Performance Memory Application Security Audits
| ® | top r & e Default levels ¥
Email Angular is running in the development mode. Call enableProd¥ode() to enable the production mode.

m)

[WOs] Live Reloading enabled.
ashok@xyz.com Full Name : Ashok
| | Email 1d : ashok@xyz.com [

MRCET

DataService)

Page 160

Department of CSE MRCET

7. Http Module:-

Defination:-

$http is an AngularJS service for reading data from remote servers. Implements an HTTP client
API for Angularapps that relies on the XMLHttpRequest interface exposed by browsers.
Includes testability features, typed request and response objects, request and response
interception, observable APIs, and streamlined error handling.

These components are self-sufficient and can be used on their own without being tied to a
specific NgModule. But, sometimes, when you’re working with these standalone components,
you might need to fetch data from servers or interact with APIs using HTTP requests.

We need to import the http module to make use of the http service. Let us consider an
example to understandhow to make use of the http service.

Examp|e1 :-Fetching data from API and displayed console

To start using the http service, we need to import the module in app.module.ts as shown below

import { BrowserModule } from '‘@angular/platform-
browser';import { NgModule } from '@angular/core’;
import { BrowserAnimationsModule } from '@angular/platform-
browser/animations';import { HttpClientModule } from
'‘@angular/common/http’;
import { AppComponent } from
".Japp.component'; @NgModule({
declarations: |
AppCompon
ent
],
imports: |
BrowserModu
le,
BrowserAnimationsMod
ule,HttpClientModule

],

If you see the highlighted code, we have imported the HttpClientModule from
@angular/common/http and thesame is also added in the imports array.

Let us now use the http client in the app.component.ts.

Page 161

Department of CSE MRCET

import { Component } from '@angular/core’;
import { HttpClient } from
'‘@angular/common/http'; @Component({

selector: "app-root’,

templateUrl:

"./app.component.html’,

styleUrls:

[./app.component.css']

)

export class AppComponent {

Annctviintavinvivianta hitn-

Page 162

http://jsonplaceholder.typicode.com/users

Department of CSE MRCET
subscribe((data) = console.log(data))
}
}

Let us understand the code highlighted above. We need to import http to make use of the
service, which is doneas follows -

import { HttpClient } from '@angular/common/http’;

In the class AppComponent, a constructor is created and the private variable http of type
Http. To fetch thedata, we need to use the get API available with http as follows

this.http.get();
It takes the url to be fetched as the parameter as shown in the code.

We will use the test url — https://jsonplaceholder.typicode.com/users to fetch the json data.
The subscribe willlog the output in the console as shown in the browser -

= |
a Angular 6 Application X +
C @ localhost:4200 k¢ :
= O] Console » : X
Pl © |top v
app compOﬁan ts 16 -~
(18) [{ b ety A=} ks
'{'"}) }) L J’J r .}J {“'}J
{-}]
»@: {id: 1, name: “"Leanne Gra
»1: {id: 2, name: "Ervin Howe
»2: {id: 3, name: "Clementine
»3: {id: 4, name: "Patricia L
»4: {id: 5, name: “"Chelsey Di
»5: {id: 6, name: "Mrs. Denni
»6: {id: 7, name: "Kurtis Wei
v
7. f34. © PRI COPSIFRRIN.. | | E oot FORt, RS -
| 4
Console What's New X X

If you see, the json objects are displayed in the console. The objects can be displayed in the

browser too.

Example2:-

Page 163

https://jsonplaceholder.typicode.com/users

Department of CSE . MRCET
For the objects to be displayed in the browser, update the

codesin app.component.html and app.component.ts as
follows -

import { Component } from '@angular/core’;
import { HttpClient } from '@angular/common/http’;

Page 164

Department of CSE MRCET

@Component({
selector: ‘app-
root',
templateUrl:
".Japp.component.html’,
styleUrls:
['./app.component.css']

)

export class AppComponent {
constructor(private http:
HttpClient) { }httpdata;
ngOnlnit() {

this.http.get("http://jsonplaceholder.typicode.com/

In app.component.ts, using the subscribe method we will call the display data method
and pass the datafetched as the parameter to it.

In the display data method, we will store the data in a variable httpdata. The data is
displayed in the browserusing for over this httpdata variable, which is done in the
app.component.html file.

<ul *ngFor = "let data of httpdata">
Name : {{data.name}} Address: {{data.address.city}}

The json object is as follows -

{
"id": 1,
"name": "Leanne
Graham","username":
"Bret",

"email": "Sincere@april.biz",

"address": {
"street": "Kulas
Light", "suite": "Apt.
556", "city":
"Gwenborough",
"zipcode": "92998-
3874","geo": {
"lat": "-37.3159",
"Ing": "81.1496"

Page 165

mailto:Sincere@april.biz
http://jsonplaceholder.typicode.com/users
http://jsonplaceholder.typicode.com/users

Department of CSE MRCET
|8

"phone": "1-770-736-8031 x56442",
"website":
"hildegard.org",
"company": {
"name": "Romaguera-Crona",

Page 166

Department of CSE MRCET
"catchPhrase": "Multi-layered client-server

neural-net","bs": "harness real-time e-
markets"

}
}

The object has properties such as id, name, username, email, and address that internally has
street, city, etc. andother details related to phone, website, and company. Using the for loop,
we will display the name and the city details in the browser as shown in the
app.component.html file.

This is how the display is shown in the browser -

T

a Angular 6 Application X +

C @® localhost:4200 W

e Name : Leanne Graham Address: Gwenborough
e Name : Ervin Howell Address: Wisokyburgh

e Name : Clementine Bauch Address:
McKenziehaven

e Name : Patricia Lebsack Address: South Elvis
e Name : Chelsey Dietrich Address: Roscoeview

e Name : Mrs. Dennis Schulist Address: South
Christy

e Name : Kurtis Weissnat Address: Howemouth -

Let us now add the search parameter, which will filter based on specific data.

Example 3:-

We need to fetch the data based on the search param passed.

Following are the changes done in app.component.html and app.component.ts

files —app.component.ts

Page 167

Department of CSE MRCET
import { Component } from '@angular/core’;
import { HitpClient } from
'‘@angular/common/http'; @Component({
selector: ‘app-root’,
templateUrl:

".Japp.component.html’,
stvlelrls-

Page 168

Department of CSE MRCET

export class AppComponent {

constructor(private http:

HttpClient) { }httpdata;

name;

searchparam

= 2;ngOninit()

{
this.http.get("http://jsonplaceholder.typicode.com/users?id="+this.searchparam)
.subscribe((data) => this.displaydata(data));

}

AicanlavidatalAdata) (Hhin hitrnAata — Aata:)

For the get api, we will add the search param id = this.searchparam. The searchparam is
equal to 2. We needthe details of id = 2 from the json file.

This is how the browser is displayed -

r

FE)

Q Angular 6 Application X +

C @® localhost:4200 W

e Name : Ervin Howell Address: Wisokyburgh

We have consoled the data in the browser, which is received from the http. The same
is displayed in thebrowser console. The name from the json with id = 2 is displayed in
the browser.

Example4.-

Creating Angular Project Use below Commands

Page 169

http://jsonplaceholder.typicode.com/users?id

Department of CSE MRCET
npm install -g @angular/cli //creating cli

ng version
ng new prog9 //creating angular project SPA(Single page application) /app component is
a defaultcomponent.

Page 170

Department of CSE
e cd prog9
e ng g cheader //creating header component
e nggchome //creating home component
e ng g c profile //creating profile component
e ng serve //running angular project

Step1: header.component.css

ul 1i{

list-style: none;
}
ul li af

text-decoration: none;
}
ul{

background-color:

aqua;height: 50px;

line-height:50px
X font-weight:
bold; font-

size:20px;

Step 2:- Create navbar in header.component.html

<|i>
Profile

MRCET

Page 171

Department of CSE
Step 3:- Create navbar in home.component.html

<h1>Welcome to Home Page</h1>

MRCET

172

Department of CSE MRCET

Step 4:-Configure route links in app.module.ts

import { ProfileComponent } from
"./profile/profile.component’;import { HeaderComponent }
from './header/header.component’;import {
HomeComponent } from './home/home.component’; import
{ RouterModule,Routes } from '@angular/router’;
import { HitpClientModule } from
'@angular/common/http';const routes:Routes=[

{

path:",component:HomeComponent
12
{

path:'profile',component:ProfileComponent

12

imports:
[RouterModule.forRoot(routes),

HttpClientModule]

Step 5:-Use header selector in the app.component.html along with <router-outlet>

<app-header></app-header>

<router-outlet></router-outlet>

Step6:Profile.component.css

img {
border-radius: 50%;

Page 173

Department of CSE

Step7:Profile.component.html

MRCET

174

Department of CSE
<h1>Welcome to profile page</h1>

<button (click)="getData()">Get Profile</button>

<div *nglf="data">

<table>

<tr><th>|D</th>

<td>{{data.id}}</td></tr>

<tr><th>Name</th>

<td>{{data.name}}</td></tr>

<tr><th>Email</th>

<td>{{data.email}}</td></tr>

<tr><th>Phone</th>

<td>{{data.phone}}</td></tr>

</table>

</div>

Step8:Profile.component.ts

import { Component } from '@angular/core’;

import { HttpClient} from '@angular/common/http’;

@Component({
selector: 'app-
profile',

templateUrl:

MRCET

Page 175

Department of CSE MRCET

" /profile.component.html',styleUrl:
"./profile.component.css'

)

export class ProfileCompnt { ImagePath:any;

constructor(private http:HttpClient){
this.ImagePath = 'https://static.javatpoint.com/tutorial/angular7/images/angular-7-logo.png’;
}
data:any;
getData()
{
this.http.get('https://jsonplaceholder.typicode.com/users/1")
.subscribe((data)=
>{this.data=data;
)
}
}

Output:

Page 176

Department of CSE MRCET

v) FSD-LAB/week10/program10/s X TAY Program100 X W HTML File Paths % | 'V Property Bindingin Angular8| X | G profileimages - Google Search X | +

€ > C O localhost:4200/profile «Q & RS °

™M Gmail @ @ YouTube @ Maps

Welcome to profile page

ID 1
Name Leanne Graham
Email Sincere@april.biz
Phone 1-770-736-8031 x56442

: _ .. = 2157
88 O Type heretosearch m =i e n ﬁ @ @ - ‘ J 26°C Haze ~ & T 7z ® Q) ENG 22.06.2004 =

Page 177

Department of CSE MRCET
8.0Observables:-

Defination:-

Observables provide support for data sharing between publishers and subscribers in an
angular application. ltis referred to as a better technique for event handling, asynchronous
programming, and handling multiple values as compared to techniques like promises.

A special feature of Observables is that it can only be accessed by a consumer who
subscribes to it i.e A function for publishing values is defined, but it is not executed by the
subscribed consumer (it can be anycomponent) only via which the customer can receive
notifications till the function runs or till they subscribed.

An observable can deliver multiple values of any type. The API for receiving values is the
same in any condition and the setup and the logic are both handled by the observable. Rest
thing is only about subscribingand unsubscribing the information required.

Observers: To handle receiving observable messages, we need an observable interface
which consists ofcallback methods with respect to the messages by observables.

Usage

The basic usage of Observable in Angular is to create an instance to define a subscriber
function. Whenever a consumer wants to execute the function the subscribe() method is called.
This function defines how to obtain messages and values to be published.

To make use of the observable, all you need to do is to begin by creating notifications using
subscribe() method, and this is done by passing observer as discussed previously. The
notifications are generally Javascript objects that handle all the received notifications. Also, the
unsubscribe() method comes along with subscribing () methodso that you can stop receiving
notifications at any point in time.

Types of Notifications and Description

1. next: It is called after the execution starts for zero times or more than that. It is a mandatory
notificationfor catching each value delivered.

2. error: It is a handler for each error message. An error stops execution of the observable instang

3. complete: It is a handles in which the completion of observable execution is notified.

Before using Observables do import Observables from rxjs library by writing the following cod

import {Observables} from 'rxjs’

Error Handling:

Observables produce asynchronous values and thus try/catch do not catch any errors
because it may lead to stop the code irrespective of other tasks running at that instance of
time. Instead, we handle errors by specifying an error callback on the observer. When an
error is produced, it causes the observable to clean upsubscriptions and stop producing
values for that subscription. An observable can either produce values (calling the next
callback), or it can complete, calling either the complete or error callback.

Page 178

[

Department of CSE
The syntax for error callback

observable.subscribe({
next(val) { console.log('"Next: ' +
val)},error(err) {

console_loa('Error: ' + err)!

Example:-
app.component.htmi:-

<button (click)="test()">get</button>
<button (click)="lose()">lose</button>

app.component.ts:-

import { Component } from
'‘@angular/core';import { Observable }
from 'rxjs'; @Component({

selector: 'app-root’,

templateUrl:

".Japp.component.html’,

styleUrl: ./app.component.css'

)

export class AppComponent {

myobs=new Observable(

(listener)=>{

listener.next("subscribed");

listener.next(2);
setTimeout(()=>listener.next(3),1000);
setTimeout(()=>listener.next(4),1000);
setTimeout(()=>listener.error("error
something"),1000);
setTimeout(()=>listener.next(6),1000);
//setTimeout(()=>listener.complete(),1000);

}
)
aaa:an
y;
test(){
this.aaa=this.myobs.subscribe
((data)=>{console.log(data)},
err=>{console.log(err)},
()=>{console.log("completed")
}

)
}

MRCET

Page 179

Department of CSE MRCET
lose(){

this.aaa.unsubscri
be();
}
}
Output:-
gt [lose | ‘< [0 Elements Console Sources Network >> @ ¢ X
1] @ top Y © Y Filter Default levels Y No Issues
©
Angular is running in development mode. core.mjs:30817
subscribed app.component.ts:25
2 app.component.ts:25
3 app.component.ts:25
4 app.component.ts:25
error something app.component.ts:26

More Information:-
Observables in
Angular?

We use Observable to perform asynchronous operations and handle asynchronous data. Anoth
way of handlingasynchronous is using promises. We can handle asynchronous operations usin
either Promises or Observables.

What are asynchronous operations and asynchronous data?

We already know that JavaScript is a single-threaded language. That means the code is
executed line by line andonce the execution of one code is complete then only the next code of
the program will be executed. When we make a request to the HT TP server that will take more
time.So the next statement after the HTTP request has to wait for the execution. It will only get
executed when the HTTP request completes. We can say that the synchronized code is blocked
in nature.

This is the way the asynchronous programs came into the picture. Asynchronous code
executing in thebackground without blocking the execution of the code in the main thread.
Asynchronous code is non-blocking. That means we can make HTTP requests asynchronously.

Using an asynchronous program we can perform long network requests without blocking the
main thread. Thereare 2 ways in which we can do that.

[Using Observables
[Using Promises

Page 180

er
g

Department of CSE

MRCET
What is the difference between Promises and Observables?
Request —
_— > AR
@ — E] <>
< - | -
Response | = | =
Client Web Database
Server Server

Page 181

Department of CSE MRCET
Let’s say we are requesting a list of users from the server. From the browser, we are sending a

request to the server and the server will get the data from the database. Let’s say the data which
we are requesting is huge. In that case, the server will get some time to get the data from the
database.

Once the data is ready the data will send from the server to the client-side. Here server gathered
all the data and when the data is ready that will send back to the client-side. This is how gets
the Promise work. It promises to provide data over a period of time. Promise provides us the
data once the complete data is ready. The data can bethe actual data that we requested or it
can also be an error. If there is no internet connection. In that case, also promises to return
some data. That data will be the error message or an error object.

Observables are not waiting for the complete data to be available. An Observable streams the
data. When the datais available partially it will send to the client.

Promises

1. Helps you run functions asynchronously, and use their return values (or exceptions), but only
once whenexecuted.

2. Not lazy.

3. Not cancellable (there are Promise libraries out there that support cancellation,
but ES6Promise doesn’t so far). The two possible decisions are Reject and
Resolve.

4. Cannot be retried (Promises should have access to the original function that
returned thepromise to have a retry capability, which is a bad practice)

5. Provided by JavaScript language.

Observables

1. Helps you run functions asynchronously, and use their return values in a continuous sequence
(multiple times)when executed.

2. By default, it is lazy as it emits values when time progresses.
3. Has a lot of operators which simplifies the coding effort.

4. One operator retry can be used to retry whenever needed, also if we need to retry the observable
based on someconditions retryWhen can be used.

5. Not a native feature of Angular or JavaScript. Provide by another JavaScript library which is called R

Page 182

X|S.

Department of CSE

promise

observable

An Observable is a function that converts the ordinary stream of data into an Observable stream

fail

success data

cancel retry *““*° subscribe() map() filter{)

MRCET

of data. You canthink of Observable as a wrapper around the Ordinary stream of data.

Page 183

Department of CSE MRCET

9. Routing

The ngRoute module helps your application to become a Single Page Application.

What is Routing in AngularJS?

If you want to navigate to different pages in your application, but you also want the
application to be a SPA(Single Page Application), with no page reloading, you can use the
ngRoute module.

The ngRoute module routes your application to different pages without reloading the entire
application.

In Angular, routing plays a vital role since it is essentially used to create Single Page
Applications. These applications are loaded just once, and new content is added
dynamically. Applications like Google, Facebook, Twitter, and Gmail are a few examples of
SPA. The best advantage of SPA is that they provide an excellent user experience and you
don’t have to wait for pages to load, and by extension, this makes the SPA fast and gives a
desktop-like feel.

It generally specifies navigation with a forward slash followed by the path defining the new cont

facebook

Log in to Facebook

Example:-

Note:-Install Node Js Software and Visual Studio.

Creating Angular Project Use below Commands

e npminstall—g @angular/cli //creating cli

e ngversion

e ngnew prog9 --standalone false //creating angular project SPA(Single page application)
//app component is a default component.

e cd prog9

Page 184

ent.

https://www.simplilearn.com/tutorials/angular-tutorial/what-is-angular

Department of CSE

e nggcheader //creating header component
e nggchome //creating home component

e nggcprofile //creating profile component
e ngserve //runningangular project

MRCET

Creating body of about, contact, home and header. Header is a navbar this page creating routerLinks
aboutand contact. Home is a default link when header loaded it is displayed. App.module.ts file

creating url pathsfor each page.

1) about.component.html:-

<h1>This is About Component</h1>

2) contact.component.html:-

<h1>This is Contact Component</h1>

3)header.component.css:-

ul 1i{

list-style: none;
}
ul li af

text-decoration: none;
}
ul{

display: flex;

justify-content: flex-

start;gap: 20px;

background-color:

aqua;height: 50px;
}
a{

line-

height:50px;

color:black;

Page 185

Department of CSE MRCET
margin:0 20px;

font-weight:
bold;font-

size:30px;

4) header.component.html:-

<|i>
about

<|i>
contact

5)home.component.html:-

<h1>This is Home Component</h1>

6) notfound.component.html:-

<p>notfound works!</p>

7)app.component.html:-

<app-header></app-header>

<router-outlet></router-outlet>

8)app.module.ts:-

import { AppComponent } from './app.component’;

import { HeaderComponent } from

Page 186

Department of CSE] MRCET
"./header/header.component’; import {

AboutComponent } from './about/about.component’;
import { ContactComponent } from
"./contact/contact.component’;import {
HomeComponent } from './home/home.component’;
import { NotfoundComponent } from
"./notfound/notfound.component';import {

RouterModule,Routes } from '@angular/router’;
const routes:Routes=|

{

path:",component:HomeComponent

Page 187

{
path:'about',component:AboutComponent
13
{
path:'contact',component:ContactComponent
13
{
path:"*',component:NotfoundComponent
}
]
imports: [

RouterModule.forRoot(routes)

],

Output:

Page 188

<« > C @ localhost:4200/contact

M Gmail €@ @ YouTube @ Maps

This is Contact Component

P Type here to search m

~) devisar/FSD-LAB % 74\ Routingex1

eiﬁg@ EE JZT’CHEZE A@@ﬁmnu}msﬂﬂiﬂlﬂ

Page 189

UNIT-4

Your First Node API

Hello Node,js

Node.js was first released in 2009 by Ryan Dahl as a reaction to how slow web
servers were at the time. Most web servers would block for any 1/0 task®, such as
reading from the file system or accessing the network, and this would dramatically
lower their throughput. For example, if a server was receiving a file upload, it would
not be able to handle any other request until the upload was finished.

At that time, Dahl mostly worked with Ruby, and the dominant model for web
applications was to have a pool of ruby processes that a web server (e.g. Ngninx)
would proxy to. If one Ruby process was blocked with an upload, Nginx served the
request to another.

Node.js changed this model by making all I/0 tasks non-blocking and asynchronous. This
allowed web servers written in Node.js to serve thousands of requests concurrently -
subsequent requests didn’t have to wait for previous ones to complete.

The first demo of Node.js was generated so much interest because it was the first
time that a developer could create their own web server easily and have it work so
well.

Over time Node.js became good at system tasks other than web serving and
started to shine as a flexible yet lower level server-side language. It could do
anything typically done with Python, Ruby, Perl, and PHP, and it was faster, used
less memory, and in most cases had better APIs for the system calls.

Forexample, with Node.js we can create HTTP and TCP servers with only a few lines
of code. We’'ll dive in and build one together soon, but just to show what we mean,
here’s a functioning Node.js web server in only 80 characters:

01-first-node-api/00-hello-world.js

require('http")
.createServer((req, res) => res.end('hello world!"))
.listen(8080)

Page 190

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Input/output

A Rich Module Ecosystem

Node.js began to shine with the introduction of npm, the package manager bundled
with Node.js. A core philosophy of Node.js is to have only a small collection of built-
in modules that come preinstalled with the language.

“https://en.wikipedia.org/wiki/Input/output

Page 191

https://en.wikipedia.org/wiki/Input/output

Examples of these modules are fs, http, tcp, dns, events, child_process, and crypto. There’s
a full list in the Node.js APl documentation®.

This may seem to be a bad thing. Many people would be puzzled as why Node.js
would choose not to have a large collection of standard modules preinstalled and
available to the user. The reason is a bit counterintuitive, but has ultimately been
very successful.

Node.js wanted to encourage a rich ecosystem of third-party modules. Any module
that becomes a built-in, core module will automatically prevent competition for its
features. In addition, the core module can only be updated on each release of
Node.js.

This has a two-fold suppression effect on module authorship. First, for each module
that becomes a core module in the standard library, many third-party modules that
perform a similar feature will never be created. Second, any core modules will have
development slowed by the Node.|s release schedule.

This strategy has been a great success. npm modules have grown at an incredible pace,
overtaking all other package managers. In fact, one of the best things about Node.js is
having access to a gigantic number of modules.

When To Use Node s

Node.js is a great choice for any task or project where one would typically use a
dynamic language like Python, PHP, Perl, or Ruby. Node.js particularly shines
when used for:

« HTTP APIs,

« distributed systems,

« command-line tools, and

« cross-platform desktop applications.

Node.js was created to be a great web server and it does not disappoint. In the
next section, we’ll see how easy it is to build an HTTP API with the built-in core http
module.

Web servers and HTTP APIs built with Node.js generally have much higher
performance than other dynamic languages like Python, PHP, Perl, and Ruby. This
is partly because of its non-blocking nature, and partly because the Node.js V8
JavaScript interpreter is so well optimized.

There are many popular web and API frameworks built with Node.js such as express®, hapi’,

restify®.

Distributed systems are also very easy to build with Node.js. The core tcp module
makes it very easy to communicate over the network, and useful abstractions like

Page 2

and

https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://nodejs.org/api/index.html
https://expressjs.com/
https://expressjs.com/
https://hapijs.com/
https://hapijs.com/
https://restify.com/
https://restify.com/

streams allow us to build systems using composable modules like dnode®.

°hitps://nodejs.org/api/index.html
Shttps://expressjs.com
"https://hapijs.com

Bhttps://restify.com
https://www.npmijs.com/package/dnode

Page 3

https://www.npmjs.com/package/dnode
https://www.npmjs.com/package/dnode
https://nodejs.org/api/index.html
https://expressjs.com/
https://hapijs.com/
https://restify.com/
https://www.npmjs.com/package/dnode

Command-line tools can make a developer’s life much easier. Before Node.js, there
wasn’t a good way to create CLIs with JavaScript. If you’re most comfortable with
JavaScript, Node.js will be the best way to build these programs. In addition, there
are tons of Node.js modules like yargs'®, chalk', and blessed'? that make writing CLIs
a breeze.

Electron®, allows us to build cross-platform desktop applications using JavaScript,
HTML, and CSS. It combines a browser GUI with Node.js. Using Node.js we’re able
to access the filesystem, network, and other operating system resources. There’s a
good chance you use a number of Electron apps regularly.

When Node.js May Not Be The Best Choice

Node.js is a dynamic, interpreted language. It is very fast compared to other
dynamic languages thanks to the V8 JIT compiler. However, if you are looking for a
language that can squeeze the most performance out of your computing resources,
Node.js is not the best.

CPU-bound workloads can typically benefit from using a lower-level language like C,
C++, Go, Java, or Rust. As an extreme example, when generating fibonacci
numbers™ Rust and C are about three times faster than Node.js. If you have a
specialized task that is particularly sensitive to performance, and does not need to
be actively developed and maintained, consider using a lower-level level language.

Certain specialized software communities like machine learning, scientific
computing, and data science have traditionally used languages other than
JavaScript. Over time they have created many packages, code examples, tutorials,
and books using languages like Python, R, and Java that either do not exist in
JavaScript, are not at the same level of maturity, or do not have the same level of
optimization and performance. Node.js might become more popular for these tasks
in the future as more flagship projects like TensorF1low.js' are developed. However,
at this current time, fewer people in these disciplines have much Node.js
experience.

Front-end Vs. Back-end JavaScript

If you’re more familiar with using JavaScript in the browser than you are with using
it in Node.js, there a few differences worth paying attention to.

The biggest difference between Node.js and running JavaScript in the browser is the
lack of globals and common browser APIs. For example, window'® and document are
unavailable in Node.js. Of

Page 4

https://yargs.js.org/
https://yargs.js.org/
https://github.com/chalk/chalk#readme
https://github.com/chalk/chalk#readme
https://github.com/chjj/blessed
https://github.com/chjj/blessed
https://github.com/electron/electron#readme
https://github.com/electron/electron#readme
https://github.com/RisingStack/node-with-rust
https://github.com/RisingStack/node-with-rust
https://js.tensorflow.org/
https://js.tensorflow.org/
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Document

1%https://yargs.js.org/
"https://github.com/chalk/chalk#readme
2https://github.com/chijj/blessed
hitps://github.com/electron/electron#ireadme
"4https://github.com/RisingStack/node-with-rust
Shitps://js.tensorflow.org/
®https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document

Page 5

https://yargs.js.org/
https://github.com/chalk/chalk#readme
https://github.com/chjj/blessed
https://github.com/electron/electron#readme
https://github.com/RisingStack/node-with-rust
https://js.tensorflow.org/
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document

O 00 N OO0 1 D W N B

=
[

course, this should not be not surprising; Node.js does not need to maintain a DOM
or other browser- related technologies to function. For a list of global objects that
browsers and Node.js share, see MDN'’s list of Standard Built-in Objects™®.

Both Node.js and browser-based JavaScript can perform many of the same functions such
as access the network or filesystem. However, the way these functions are accomplished
will be different. For example, in the browser one will use the globally available fetch() API
to create an HTTP request. In Node.js, this type of action would be done by first using
const http = require('http') to load the built-in core http module, and afterwards using
http.get('http://www.fullstack.io/", function (res) { ... }).

Diving In: Your First Node.js API

We’re going to start off by creating our own web server. At first, it will be very
simple; you’ll be able to open your browser and see some text. What makes this
impressive is just how little code is required to make this happen.

01-first-node-api/01-server.js

const http = require('http")
const port = process.env.PORT || 1337

const server = http.createServer(function (req, res) {
res.end('hi')

})

server.listen(port)
console.log(Server listening on port ${port}’)

Run this file with node 01-server.js, and you should see Server 1listening on port 1337
printed to your terminal:

®https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

Page 6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
http://www.fullstack.io/%27
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

node @l-server.js
Server listening on port 1337

01-first-node-api: node 01-server.js

After you see that, open your browser and go to http://localhost:1337 to See your message:

Page 7

_ focalhost1337/

¢ o @ localhost:1337

hi

In @ >»

<

-9 %

Hello!

Let’s look at this file line by line. First up:

01-first-node-api/01-server.js

const http = require('http")

This loads the core nhttp' module and stores it in our http variable. require()®° is a
globally accessible function in Node.js and is always available. nttp is a core
module, which means that it is always available to be loaded via require(). Later on
we’ll cover third-party modules that need to be installed before we can load them

using require().

*https://nodejs.org/api/http.html
2Ohttps://nodejs.org/api/modules.html#modules_require_id

Page 8

https://nodejs.org/api/http.html
https://nodejs.org/api/http.html
https://nodejs.org/api/modules.html#modules_require_id
https://nodejs.org/api/modules.html#modules_require_id
https://nodejs.org/api/http.html
https://nodejs.org/api/modules.html#modules_require_id

01-first-node-api/01-server.js

const port = process.env.PORT || 1337

Here we choose which port our web server should listen to for requests. We store
the port number in our port variable.

Also, we encounter a Node.js global object, process?'. process is a global object?? with
information about the currently running process, in our case it’s the process that is
spawned when we run node @1-server.js. process.env iS an object that contains all
environment variables. If we were to run the server with PorRT=3000 node @1-server.js
instead, process.env.PoRT Would be set to 3eee. Having environment variable control
over port usage is a useful convention for deployment, and we’ll be starting that
habit early.

01-first-node-api/01-server.js

const server = http.createServer(function (req, res) {
res.end('hi")

1))

Now we get to the real meat of the file. We use http.createServer()® to create a HTTP
server object and assign it to the server variable. http.createServer() accepts a single
argument: a request listener function.

Our request listener function will be called every time there’s an HTTP request to
our server (e.g., each time you hit http://1ocalhost:1337 in your browser). Every time
it is called, this function will receive two arguments: a request object®** (req) and a
response object?® (res).

For now we’re going to ignore req, the request object. Later on we’ll use it to get
information about the request like url and headers.

The second argument to our request listener function is the response object, res. We
use this object to send data back to the browser. We can both send the string hi:
and end the connection to the browser with a single method call: res.end('hi").

At this point our server object has been created. If a browser request comes in, our
request listener function will run, and we’ll send data back to the browser. The only
thing left to do, is to allow our server object to listen for requests on a particular port:

21https://nodejs.org/api/process.html#process_process
22https://nodejs.org/api/globals.htmli#globals_require
23https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener
24https://nodejs.org/api/http.html#http_class_http_incomingmessage

Page 9

https://nodejs.org/api/process.html#process_process
https://nodejs.org/api/process.html#process_process
https://nodejs.org/api/globals.html#globals_require
https://nodejs.org/api/globals.html#globals_require
https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener
https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/api/process.html#process_process
https://nodejs.org/api/globals.html#globals_require
https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener
https://nodejs.org/api/http.html#http_class_http_incomingmessage

2Shttps://nodejs.org/api/http.html#http_class_http_serverresponse

Page 10

https://nodejs.org/api/http.html#http_class_http_serverresponse

01-first-node-api/01-server.js

server.listen(port)

Finally, for convenience, we print a message telling us that our server is running
and which portit’s listening on:

01-first-node-api/01-server.js

console.log(Server listening on port ${port}’)

And that’s all the code you need to create a high-performance web server with Node.js.

Of course this is the absolute minimum, and it’s unlikely that this server would be
useful in the real world. From here we’ll begin to add functionality to turn this server
into a usable JSON API with routing.

Serving JSON

When building web apps and distributed systems, it's common to use JSON APIs to
serve data. With one small tweak, we can change our server to do this.

In our previous example, we responded with plain text:

01-first-node-api/01-server.js

const server = http.createServer(function (req, res) {
res.end('hi")

1))

In this example we’re going to respond with JSON instead. To do this we’re going
to replace our request listener function with a new one:

01-first-node-api/02-server.js

const server = http.createServer(function (req, res) {
res.setHeader('Content-Type', 'application/json')
res.end(JSON.stringify({ text: 'hi', numbers: [1, 2, 3] }))

1)

When building a production server, it's best to be explicit with responses so that
clients (browsers and other consumers of our API) don’'t handle our data in
unexpected ways (e.g. rendering an image as text). By sending plain text without a
content-Type header, we didn’t tell the client what kind of data it should expect.

Page 11

In this example, we’re going to let the client know our response is JSON-formatted
data by setting the content-Type response header. In certain browsers this will allow
the JSON data to be displayed with pretty printing and syntax highlighting. To set the
Content-Type We USe the res.setHeader ()?® method:

01-first-node-api/02-server.js

res.setHeader('Content-Type', 'application/json'")

Next, we use the same method as last time to send data and close the connection.
The only difference is that instead of sending plain text, we’re sending a JSON-
stringified object:

01-first-node-api/02-server.js

res.end(JSON.stringify({ text: '"hi', numbers: [1, 2, 3] }))

Run node @2-server.js and navigate to http://localhost:1337 in your browser to see our
new JSON response:

28https://nodejs.org/api/http.html#http_request_setheader_name_value

Page 12

https://nodejs.org/api/http.html#http_request_setheader_name_value
https://nodejs.org/api/http.html#http_request_setheader_name_value
https://nodejs.org/api/http.html#http_request_setheader_name_value

_ focalhost1337/ X

c o @ localhost:1337 w m a » =

JSON Raw Data Headers

Save Copy Collapse All Expand All Filter JSON
text: "hi"

numbers:

What our JSON response looks like

Not all browsers will pretty-print JSON. In this screenshot I'm using Firefox, but there
are several extensions available for Chrome like JSON Formatter?” that will achieve
the same result.

Of course, our APl needs some work before it's useful. One particular issue is that
no matter the URL path we use, our API will always return the same data. You can
see this behavior by navigating to each of these URLSs:

* http://localhost:1337/a
* http://localhost: 1337/fullstack
* http://localhost:1337/some/long/random/url.

If we want to add functionality to our API, we should be able to handle different
requests to different url paths or endpoints. For starters, we should be able to serve
both our original plain text response and our new JSON response.

27https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoarrelated

Page 13

https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa/related
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa/related
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa/related

Basic Routing

Not all client requests are the same, and to create a useful API, we should be able
to respond differently depending on the requested url path.

We previously ignored the request object argument, req, and now we’re going to
use that to see what url path the client is requesting. Depending on the path, we
can do one of three things:

* respond with plain text,
* respond with JSON, or
« respond with a 404 “Not Found” error.

We’re going to change our request listener function to perform different actions depending
on the value of req.ur1?. The url property of the req object will always contain the full path
of the client request. For example, when we navigate to http://localhost:1337 in the
browser, the path is /, and when we navigate to http://localhost:1337/fullstack, the path
is /fullstack.

We’re going to change our code so that when we open http://localhost:1337 We see
our initial plain-text “hi” mesage, when we open http://localhost:1337/json We'll see
our JSON object, and if we navigate to any other path, we’ll receive a 404 “Not
Found” error.

We can do this very simply by checking the value of req.url in our request listener
function and running a different function depending on its value.

First we need to create our different functions - one for each behavior. We’'ll start with
the functions for responding with plain-text and JSON. These new functions will use
the same arguments as our request listener function and behave exactly the same
as they did before:

01-first-node-api/03-server.js

function respondText (req, res) {
res.setHeader('Content-Type', 'text/plain')
res.end('hi")

}

function respondJson (req, res) {
res.setHeader('Content-Type', 'application/json')
res.end(JSON.stringify({ text: 'hi', numbers: [1, 2, 3] }))

}

The third function will have new behavior. For this one, we’ll respond with a 404 “Not
Found” error. To do this, we use the res.writeHead()?® method. This method will let us

Page 14

https://nodejs.org/api/http.html#http_message_url
https://nodejs.org/api/http.html#http_message_url
https://nodejs.org/api/http.html#http_response_writehead_statuscode_statusmessage_headers
https://nodejs.org/api/http.html#http_response_writehead_statuscode_statusmessage_headers

set both aresponse status code and header. We use this to respond with a 404 status
and to set the content-Type tO text/plain.

28https://nodejs.org/api/http.html#http_message_url
2%https://nodejs.org/api/http.html#http_response_writehead_statuscode_statusmessage_headers

Page 15

https://nodejs.org/api/http.html#http_message_url
https://nodejs.org/api/http.html#http_response_writehead_statuscode_statusmessage_headers

The 404 status code tells the client that the communication to the server was
successful, but the server is unable to find the requested data.

After that, we simply end the response with the message "Not Found":

01-first-node-api/03-server.js

function respondNotFound (req, res) {
res.writeHead(404, { 'Content-Type': 'text/plain' })
res.end('Not Found")

}

_ e X

< c o @ localhost:1337/doesnotexist e w m e » =

Not Found

What our server returns for paths that don’t exist

With our functions created, we can now create a request listener function that
calls each one depending on the path in req.url:

Page 16

01-first-node-api/03-server.js

const server = http.createServer(function (req, res) {
if (req.url === "/") return respondText(req, res)
if (req.url === '/json') return respondJson(req, res)

respondNotFound(req, res)

1)

Now that we have basic routing set up, we can add more functionality to our server
at different endpoints.

Dynamic Responses

Currently, our endpoints respond with the same data every time. For our API to be
dynamic, it needs to change its responses according to input from the client.

For apps and services in the real-world, the API will be responsible for pulling data
out of a database or other resource according to specific queries sent by the client
and filtered by authorization rules.

For example, the client may want the most recent comments by user dguttman. The API
server would first look to see if that client has authorization to view the comments
of "dguttman”, and if so, it will construct a query to the database for this data set.

To add this style of functionality to our API, we’re going to add an endpoint that
accepts arguments via query parameters. We’'ll then use the information provided
by the client to create the response. Our new endpoint will be /echo and the client will
provide input via the input query parameter. For example, to provide “fullstack” as
input, the client will use /echo?input=fullstack as the url path.

Our new endpoint will respond with a JSON object with the following properties:

* normal: the input string without a transformation

shouty: all caps

* characterCount: the number of characters in the input string
* backwards: the input string ordered in reverse

To begin, we’ll first have our request listener function check to see if the request.url begins \
/echo, the endpoint that we’re interested in. If it is, we’ll call our soon-to-be-created func
respondEcho():

vith
tion

Page 17

01-first-node-api/04-server.js

const server = http.createServer(function (req, res) {
"/") return respondText(req, res)
== '/json') return respondJson(req, res)

if (req.url
if (req.url
if (req.url.match(/”*\/echo/)) return respondEcho(req, res)

respondNotFound(req, res)

1)

Next, we create the respondecho() function that will accept the request and response
objects. Here’s what the completed function looks like:

01-first-node-api/04-server.js

function respondEcho (req, res) {
const { input = '' } = querystring.parse(
reqg.url
.split('?")
.slice(1)
.join('")

res.setHeader('Content-Type', 'application/json')
res.end(
JSON.stringify({
normal: input,
shouty: input.toUpperCase(),
characterCount: input.length,
backwards: input
.split('")
.reverse()
.join("")

}

The important thing to notice is that the first line of our function uses the
querystring.parse()*° method. To be able to use this, we first need to use require() to
load the querystring®' core module. Like http, this module is installed with Node.js and
is always available. At the top of our file we’ll add this line:

3Ohttps://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
31https://nodejs.org/api/querystring.html

Page 18

https://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
https://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
https://nodejs.org/api/querystring.html
https://nodejs.org/api/querystring.html
https://nodejs.org/api/querystring.html#querystring_querystring_parse_str_sep_eq_options
https://nodejs.org/api/querystring.html

01-first-node-api/04-server.js

const querystring = require('querystring')

Looking at our respondecho() function again, here’s how we use querystring.parse():

01-first-node-api/04-server.js

[

const { input =
req.url
.split('?")
.slice(1)
.join('")

} = querystring.parse(

We expect the client to access this endpoint with a url like /echo?input=someinput. querystring.parse()
accepts a raw querystring argument. It expects the format to be something
queryl=valuel&query2=value2.

The important thing to note is that querystring.parse() does not want the leading >.
Using some quick string transformations we can isolate the input=someinput part of
the url, and pass that in as our argument.

querystring.parse() Will return a simple JavaScript object with query param key and
value pairs. For example, { input: 'someinput’ }. Currently, we’re only interested in
the input key, so that’s the only value that we’ll store. If the client doesn’t provide an
input parameter, we’ll set a default value of ' .

Next up, we set the appropriate content-Type header for JSON like we have before:

01-first-node-api/04-server.js

res.setHeader('Content-Type', 'application/json'")

Finally, we use res.end() to send data to the client and close the connection:

01-first-node-api/04-server.js

res.end(
JSON.stringify({
normal: input,
shouty: input.toUpperCase(),
characterCount: input.length,
backwards: input
.split('")
.reverse()
.join('")
)

Page 19

like

And there we have it, our first dynamic route! While simple, this gives us a good
foundation for being able to use client-provided input for use in our APl endpoints.

_ s AS A y

<« (G @ localhost:1337/echo?input=Fullstack Node.js w @ » =

JSON Raw Data Headers

Save Copy Collapse All Expand All

normal: "Fullstack Node.js"
shouty: "FULLSTACK NODE.J1s"

characterCount: 17
backwards: "sj.edoN kcatslLluF"

Our server can now respond dynamically to different inputs

File
Serving

One of the most common uses of a web server is to serve html and other static files.
Let’s take a look at how we can serve up a directory of files with Node.js.

What we want to do is to create a local directory and serve all files in that directory to
the browser. If we create a local directory called pub1ic and we place two files in

there, index.html and ember. jpg,
we should be able to visit http://localhost:1337/static/index.html and
http://localhost:1337/static/ember.

Page 20

to receive them. If we were to place more files in that directory, they would behave the same
way.

To get started, let’s create our new directory public and copy our two example files, index.H
and ember.jpg into it.

Page 21

tml

The first thing we’ll need to do is to create a new function for static file serving and
call it when a request comes in with an appropriate req.url property. To do this we'll
add a fourth conditional to our request listener that checks for paths that begin with
/static and calls respondstatic(), the function we’ll create next:

01-first-node-api/05-server.js

const server = http.createServer(function (req, res) {
if (req.url === "/") return respondText(req, res)
if (req.url === '/json') return respondJson(req, res)
if (req.url.match(/”*\/echo/)) return respondEcho(req, res)
if (req.url.match(/~\/static/)) return respondStatic(req, res)

respondNotFound(req, res)

})

And here’s the respondstatic() function we need:

01-first-node-api/05-server.js

function respondStatic (req, res) {
const filename = ~${__dirname}/public${req.url.split('/static")[1]}"
fs.createReadStream(filename)
.on('error', () => respondNotFound(req, res))

.pipe(res)

Thefirst line is fairly straightforward. We perform a simple conversion so that we can
translate the incoming req.url path to an equivalent file in our local directory. For
example, if the req.url is

/static/index.html, this conversion will translate it to public/index.html.

Next, once we have our filename from the first line, we want to open that file and
send it to the browser. However, before we can do that, we need to use a module
that will allow us to interact with the filesystem. Just like http and querystring, fs is a
core module that we can load with require(). We make sure that this line is at the top
of our file:

01-first-node-api/05-server.js

const fs = require('fs')

We use the fs.createreadstream() method to create a stream Object representing our
chosen file. We then use that stream object’s pipe() method to connect it to the
response object. Behind the scenes, this efficiently loads data from the filesystem
and sends it to the client via the response object.

Page 22

We also use the stream object’s on() method to listen for an error. When any error
occurs when reading a file (e.g. we try to read a file that doesn’t exist), we send the
client our “Not Found” response.

If this doesn’t make much sense yet, don’t worry. We’ll cover streams in more depth in
later chapters. The important thing to know is that they’re a very useful tool within
Node.js, and they allow us to quickly connect data sources (like files) to data
destinations (client connections).

NOw run node @5-server.js and vVisit http://localhost:1337/static/index.html in your
browser. You should see the index.html page from /public load in your browser.
Additionally, you should notice that the image on this page a/so comes from the /public
directory.

_ SRt -

& ¢ @ localhost:1337/static/index.html v O % IN @O » =

esfluffypants Weekends are when the sheeple make the bed

for me. #dogsofla #sheepdog

Now serving static files. Notice how the path /static is mapped to the local directory /public

Here’s what the full e5-server. js file looks like:

Page 23

01-first-node-api/05-server.js
const fs = require('fs')
const http = require('http")

const querystring = require('querystring')
const port = process.env.PORT || 1337

const server = http.createServer(function (req, res) {
if (req.url === '/') return respondText(req, res)
if (req.url === '/json') return respondJson(req, res)
if (req.url.match(/”*\/echo/)) return respondEcho(req, res)
if (req.url.match(/"\/static/)) return respondStatic(req, res)

respondNotFound(req, res)

})

server.listen(port)
console.log(Server listening on port ${port})

function respondText (req, res) {
res.setHeader('Content-Type', 'text/plain')
res.end('hi")

function respondJson (req, res) {
res.setHeader('Content-Type', "application/json')
res.end(JSON.stringify({ text: "hi', numbers: [1, 2, 3] }))

function respondEcho (req, res) {
const { input = "'

req.url
.split('?")
.slice(1)

.join("")

} = querystring.parse(

res.setHeader('Content-Type', "application/json')
res.end(
JSON.stringify({
normal: input,
shouty: input.toUpperCase(),
characterCount: input.length,

Page 24

backwards: input
.split('")
.reverse()
.join("")
)
)
}

function respondStatic (req, res) {
const filename = ~${_dirname}/public${req.url.split('/static')[1]}"
fs.createReadStream(filename)
.on('error', () => respondNotFound(req, res))

.pipe(res)

function respondNotFound (req, res) {
res.writeHead(404, { 'Content-Type': 'text/plain' })
res.end('Not Found")

}

Up until this point we’'ve only used core modules that come built into Node.js.
Hopefully we’ve shown how easy it is to create APIs and static file servers with the
core modules of Node.js.

However, one of the best things about Node.js is its incredible ecosystem of third-
party modules available on npm (over 842,000 as | write this). Next we’re going to
show how our server would look using express, the most popular web framework for
Node.js.

Express

express IS a “fast, unopinionated, minimalist web framework for Node.js” used in
production environments the world over. express is so popular that many people have
never tried to use Node.js without express.

express iS a drop-in replacement for the core nttp module. The biggest difference between u
express and core http is routing, because unlike core http, express comes with a built-in router.

In our previous examples with core http, we handled our own routing by using
conditionals on the value of req.url. Depending on the value of req.url we execute
a different function to return the appropriate response.

In our /echo and /static endpoints we go a bit further. We pull additional information
out of the path that we use in our functions.

In respondEcho() We use the querystring module get key-value pairs from the search

Page 25

sing

query in the url. This allows us to get the input string that we use as the basis for
our response.

Page 26

In respondstatic() anything after /static/ we interpret as a file name that we pass to
fs.createReadStream(). By switching to express we can take advantage of its router which simplifies

both of these use-cases.
Let’s take a look at how the beginning of our server file changes:

01-first-node-api/06-server.js

const fs = require('fs")
const express = require('express')

const port = process.env.PORT || 1337
const app = express()

app.get('/', respondText)
app.get('/json', respondJson)
app.get('/echo', respondEcho)

app.get('/static/*', respondStatic)

app.listen(port, () => console.log(Server listening on port ${port}))

First, you’ll notice that we add a require() for express on line 2:

01-first-node-api/06-server.js

const express = require('express')

Unlike our previous examples, this is a third-party module, and it does not come with
our installation of Node.js. If we were to run this file before installing express, we would
See a Cannot find module 'express' erlror like this:

Page 27

~[fullstack-node-code/01-first-node-api

node @6-server.js
internal/modules/cjs/loader. js:6@5
throw err;
A

Error: Cannot find module ‘express’
at Function.Module._resolveFilename (internal/modules/cjs/loader.js:603:15)
at Function.Module._load (internal/modules/cjs/loader.js:529:25)
at Module.require (internal/modules/cjs/loader.js:659:17)
at require (internal/modules/cjs/helpers.js:22:18)
at Object.<anonymous> (/Users/dguttman/fullstack-nodejs-book/manuscript/code/src/01-first-node-api/@6-server,js:2:17)
at Module._compile (internal/modules/cjs/loader.js:723:30)
at Object.Module._extensions..js (internal/modules/cjs/loader.js:734:1@)
at Module.load (internal/modules/cjs/loader.js:620:32)
at tryModuleLoad (internal/modules/cjs/loader.js:560:12)

at Function.Module._load (internal/modules/cjs/loader.js:552:3)

What it looks like when we try to use a third-party module before it’s installed

To avoid this, we need to install express using npm. When we installed Node.js, npm was
installed automatically as well. To install express, all we need to do is to run npm install
express from our application directory. npm will go fetch express from its repository and place
the express module in a folder called node_modules in your current directory. If node_modules
does not exist, it will be created. When we run a JavaScript file with Node.js, Node.js will
look for modules in the node_- modules folder.

Node.js will also look in other places for modules such as parent directories and the gl

npm
installation directory, but we don’t need to worry about those for right now.

The next thing to notice is that we no longer use http.createserver() and pass it a
request listener function. Instead we create a server instance with express(). By
express convention we call this app.

Once we’ve created our server instance, app, we take advantage of express routing.
By us- ing app.get() we can associate a path with an endpoint function. For example,
app.get('/', respondText) makes it so that when we receive an HTTP GET request to /',
the respondText() function will run.

This is similar to our previous example where we run respondText() When req.url ===
'/'. One difference in functionality is that express will only run respondText() if the
method of the request is GeT. In our previous examples, we were not specific about
which types of methods we would respond to, and therefore we would have also
responded the same way to PosT, PUT, DELETE, OPTIONS, OF PATCH requests.

Under the covers, express is using core http. This means that if you understand core
http, you’ll have an easy time with express. For example, we don’t need to change our
respondText () function at all:

obal

Page 28

01-first-node-api/06-server.js
function respondText (req, res) {
res.setHeader('Content-Type', 'text/plain')

res.end('hi")

}

However, the nice thing about express is that it gives us a lot of helpers and niceties
that can make our code more succinct. For example, because responding with
JSON is so common, express adds a json() function to the response object. By
calling res.json(), express Will automatically send the correct content-Type headerand
stringify our response body for us. Here’s our respondison() function updated for
express:

01-first-node-api/06-server.js
function respondlson (req, res) {
res.json({ text: 'hi', numbers: [1, 2, 3] })

}

Another difference with express routing is that we don’t have to worry about search
query parameters when defining our routes. In our previous example we used a
regular expression to check that req.url string started with /echo instead of checking
for equality (like we did with 7 and /json). We did this because we wanted to allow
for the user-created query parameters. With express, app.get('/echo', respondEcho)
will call respondecho() for any value of search query parameters - even if they are
missing.

Additionally, express will automatically parse search query parameters (e.g. ?input=hi) and
make them available for us as an object (e.g. { input: 'hi' }). These parameters can be
accessed via req.query. Here’s an updated version of respondecho() that uses both
req.query and res.json():

01-first-node-api/06-server.js
function respondEcho (req, res) {
const { input = '' } = req.query

res.json({
normal: input,
shouty: input.toUpperCase(),
characterCount: input.length,
backwards: input
.split('")
.reverse()
.join('")
}

Page 29

The last thing to notice about express routing is that we can add regex wildcards like * to our
routes:

Page 30

01-first-node-api/06-server.js

app.get('/static/*', respondStatic)

This means that our server will call respondstatic() for any path that begins with
/static/. What makes this particularly helpful is that express will make the wildcard
match available on the request object. Later we’ll be able to use req.params to get
the filenames for file serving. For our respondstatic() function, we can take
advantage of wildcard routing. In our /static/* route, the star will match anything
that comes after /static/. That match will be available for us at req.params[e].

Behind the scenes, express uses path-to-regexp®? to convert route strings into
regular expressions. To see how different route strings are transformed into regular
expressions and how parts of the path are stored in req.params there’s the excellent
Express Route Tester? tool.

Here’s how we can take advantage of req.params in our respondstatic() function:

01-first-node-api/06-server.js

function respondStatic (req, res) {
const filename = “${__dirname}/public/${req.params[0]}"
fs.createReadStream(filename)
.on('error', () => respondNotFound(req, res))

.pipe(res)

With just a few changes we’ve converted our core http server to an express Server.
In the process we gained more powerful routing and cleaned up a few of our
functions.

Next up, we’ll continue to build on our express server and add some real-time functionality.

Real-Time Chat

When Node.js was young, some of the most impressive demos involved real-time
communication. Because Node.js is so efficient at handling 1/O, it became easy to
create real-time applications like chat and games.

To show off the real-time capabilities of Node.js we’re going to build a chat
application. Our application will allow us to open multiple browsers where each has
a chat window. Any browser can send a message, and it will appear in all the other
browser windows.

Our chat messages will be sent from the browser to our server, and our server will in
turn send each received message to all connected clients.

Page 31

https://www.npmjs.com/package/path-to-regexp
https://www.npmjs.com/package/path-to-regexp
http://forbeslindesay.github.io/express-route-tester/
http://forbeslindesay.github.io/express-route-tester/

32https://www.npmjs.com/package/path-to-regexp
33http://forbeslindesay.github.io/express-route-tester/

Page 32

https://www.npmjs.com/package/path-to-regexp
http://forbeslindesay.github.io/express-route-tester/

Forexample, if Browser A is connected, Browser A will send a message to our server,
which will in turn send the message back to Browser A. Browser A will receive the
message and render it. Each time Browser A sends a message, it will go to the
server and come back.

Of course, chat applications are only useful when there are multiple users, so when
both Browser A and Browser B are connected, when either send a message to our
server, our server will send that message to both Browser A and Browser B.

In this way, all connected users will be able to see all messages.

Traditionally, for a browser to receive data from the server, the browser has to make
a request. This is how all of our previous examples work. For example, the browser
has to make a request to /json to receive the JSON payload data. The server can not
send that data to the browser before the request happens.

To create a chat application using this model, the browser would have to constantly
make requests to the server to ask for new messages. While this would work, there
is @ much better way.

We’re going to create a chat application where the server can push messages to the
browser without the browser needing to make multiple requests. To do this, we’ll use
a technology called SSE (Server- Sent Events). SSE is available in most browsers
through the EventSource API, and is a very simple way for the server to “push”
messages to the browser.

the browser poll for updates. SSE is much simpler than websockets and provide us
the same functionality. You can read more about SSE and the EventSource API in
the MDN web docs*.

9 What about websockets? Much like websockets, SSE is a good way to avoid having

Building the App

To set this up we’ll need to create a simple client app. We’ll create a chat.html page
with a little bit of HTML and JavaScript. We’ll need a few things:

« JavaScript function to receive new messages from our server
« JavaScript function to send messages to the server

« HTML element to display messages

« HTML form element to enter messages

Here’s what that looks like:

Page 33

https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource

34https://developer.mozilla.org/en-US/docs/Web/API/EventSource

Page 34

https://developer.mozilla.org/en-US/docs/Web/API/EventSource

01-first-node-api/public/chat.html

<!DOCTYPE html>
<html lang="en">
<title>Chat App</title>
<link rel="stylesheet" href="tachyons.min.css">
<link rel="stylesheet" href="chat.css">
<body>
<div id="messages">
<h4>Chat Messages</h4>
</div>

<form id="form">
<input
id="input"
type="text"
placeholder="Your message...">
</form>

<script src="'chat.js'></script>
</body>
</html>

This is some basic HTML. We load some stylesheets from our public directory, create
some elements to display and create messages, and finally we load some simple
client-side JavaScript to handle communication with our server.

Here’s what chat. js, our client-side JavaScript, looks like:

01-first-node-api/public/chat.js

new window.EventSource('/sse').onmessage = function (event) {
window.messages.innerHTML += “<p>${event.data}</p>"

}

window.form.addEventListener('submit', function (evt) {
evt.preventDefault()

window.fetch(" /chat?message=${window.input.value})

window.input.value =

1)

We’re doing two basic things here. First, when our soon-to-be-created /sse
route sends new messages, we add them to the div element on the page with the
id "messages"”

Page 35

Second, we listen for when the user enters a message into the text box. We do this
by adding an eventlistener function to our form element. Within this listener function
we take the value of the input box window.input.value and send a request to our
server with the message. We do this by sending a GET request to the /chat path
with the message encoding in the query parameters. After we send the message,
we clear the text box so the user can enter a new message.

While the client-side markup and code is very simple, there are two main takeaways.
First, we need to create a /chat route that will receive chat messages from a client,
and second, we need to create a /sse route that will send those messages to all
connected clients.

Our /chat endpoint will be similar to our /echo endpoint in that we’ll be taking data
(a message) from the url’s query parameters. Instead of looking at the ?input= query
parameter like we did in

/echo, we’ll be looking at ?message-=.

However, there will be two important differences. First, unlike /echo we don’t need
write any data when we end our response. Our chat clients will be receiving
message data from /sse. In this route, we can simply end the response. Because
our server will send a 200 “OK” HTTP status code by default, this will act as a
sufficient signal to our client that the message was received and correctly handled.

The second difference is that we will need to take the message data and put it
somewhere our other route will be able to access it. To do this we’re going to
instantiate an object outside of our route function’s scope so that when we create
another route function, it will be able to access this “shared” object.

This shared object will be an instance of eventemitter that we will call chatemitter.
We don’t need to get into the details yet, but the important thing to know right now
is this object will act as an information relay. The eventemitter class is available
through the core events module, and eventemitter Objects have an emit(eventNamel,
...args]) method that is useful for broadcasting data. When a message comes in,
we will use chatemitter.emit() to broadcast the message. Later, when we create the
/sse route we can listen for these broadcasts.

For this example, it's not important to know exactly how event emitters work, but
of you’re curious about the details, check out the next chapter on async or the official
API documentation for EventEmitter®.

First, add a new route just like

before: 01-first-node-api/07-server.js

app.get('/chat', respondChat)

Page 36

https://nodejs.org/api/events.html#events_class_eventemitter
https://nodejs.org/api/events.html#events_class_eventemitter
https://nodejs.org/api/events.html#events_class_eventemitter
https://nodejs.org/api/events.html#events_class_eventemitter

And then we create the corresponding function:

3Shttps://nodejs.org/api/events.html#events_class_eventemitter

Page 37

https://nodejs.org/api/events.html#events_class_eventemitter

01-first-node-api/07-server.js

function respondChat (req, res) {
const { message } = req.query

chatEmitter.emit('message', message)
res.end()

There are two things to notice here. First, access the message sent from the browser in
similar way to how we access input in the /echo route, but this time use the message property
instead. Second, we’re calling a function on an object that we haven’t created yet:
chatEmitter.emit('message’, message). If we were to visit
http://localhost:1337/chat?message=hi in our browser right now, we would get an error
like this:

ReferenceError: chatEmitter is not defined

To fix this, we’ll need to add two lines to the top of our file. First, we require the
EventEmitter class via the events module, and then we create an instance:

01-first-node-api/07-server.js

const EventEmitter = require('events')

const chatEmitter = new EventEmitter()

Now our app can receive messages, but we don’t do anything with them yet. If you’d
like to verify that this route is working, you can add a line that logs messages to the
console. After the chatemitter Object is declared, add a line that listens messages
like this:

const chatEmitter = new EventEmitter()
chatEmitter.on('message’, console.log)

Then visit http://localhost:1337/chat?message=hello! in your browser and verify that the
message “hello!” is logged to your terminal.

With that working, we can now add our /sse route that will send messages to our chat
clients once they connect with the new window.EventSource('/sse') described above:

01-first-node-api/07-server.js

app.get('/sse', respondSSE)

And then we can add our respondsse() function:

Page 38

01-first-node-api/07-server.js

function respondSSE (req, res) {
res.writeHead (200, {
'Content-Type': 'text/event-stream',
"Connection': 'keep-alive'

1)

const onMessage = msg => res.write(data: ${msg}\n\n")
chatEmitter.on('message’', onMessage)

res.on('close’, function () {
chatEmitter.off('message', onMessage)

1))

Let’s break this down into its three parts:

1. We establish the connection by sending a 200 OK status code, appropriate HT TP headers according
to the SSE specification:

01-first-node-api/07-server.js

res.writeHead (200, {
'Content-Type': 'text/event-stream',
"Connection': 'keep-alive'

})

2. We listen for message events from our chatEmitter object, and when we receive them, we write
them to the response body using res.write(). We use res.write() instead of res.end() because we want
to keep the connection open, and we use the data format from the SSE specification?”:

01-first-node-api/07-server.js

const onMessage = msg => res.write(data: ${msg}\n\n")
chatEmitter.on('message', onMessage)

3. We listen for when the connection to the client has been closed, and when it happens we disconnect
our onMessage() function from our chatEmitter object. This prevents us from writing messages to a
closed connection:

3éhttps://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
37https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

Page 39

https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

01-first-node-api/07-server.js

res.on('close’', function () {
chatEmitter.off('message', onMessage)

1)

After adding this route and function, we now have a functioning real-time chat app.
If you open http://localhost:1337/static/chat.html in multiple browsers you’ll be able

to send messages back and forth:

_ SRR x +

<« C ® @ localhost:1337 wlo»

Chat Messages

Yeah, man, it really tied the room together.

What tied the room together, Dude?

My rug|

S S x _
.

@ localhost:1337

Chat Messages

Yeah, man, it really tied the room together.

What tied the room together, Dude?

Your message...

If you open two browsers you can talk to yourself

Here’s our fully completed server file:

Page 40

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

01-first-node-api/07-server.js

cons fs = require('fs')

t

cons express = require('express')
t

cons EventEmitter = require('events')
t

cons chatEmitter = new EventEmitter()

cons port = process.env.PORT || 1337

cons app = express()

app.get('/', respondText)
app.get('/json', respondJson)
app.get('/echo’, respondEcho)
app.get('/static/*', respondStatic)
app.get('/chat', respondChat)
app.get('/sse', respondSSE)

app.listen(port, () => console.log(Server listening on port ${port}))

function respondText (req, res) {
res.setHeader('Content-Type', 'text/plain’)
res.end(‘hi')

}

function respondJson (req, res) {
res.json({ text: 'hi', numbers: [1, 2, 3] })

}

function respondEcho (req, res) {
const{input="} = req.query

res.json({
normal: input,
shouty: input.toUpperCase(),
characterCount: input.length,
backwards: input
split(")
.reverse()
Join(")

})

Page 41

42

function respondStatic (req, res) {

Page 42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

const filename = "${__dirname}/public/${req.params[0]}’
fs.createReadStream(filename)
.on(‘error', () =>respondNotFound(req, res))

.pipe(res)

function respondChat (req, res) {
const { message } = req.query

chatEmitter.emit('message’, message)
res.end()

}

function respondSSE (req, res) {
res.writeHead(200, {
'‘Content-Type": 'text/event-stream’,
'‘Connection': 'keep-alive'

})

const onMessage = msg => res.write(data: ${msg}\n\n’)
chatEmitter.on('message’, onMessage)

res.on('close’, function () {
chatEmitter.off('message’, onMessage)
}
}

function respondNotFound (req, res) {
res.writeHead(404, { 'Content-Type": 'text/plain'})
res.end('Not Found')

}

Wrap Up

In this chapter we’ve shown how Node.js combines the power and performance of
a low-level language with the flexibility and maintainability of a high-level language.

We've created our first API, and we learned how to send different data formats like
plain-text and JSON, respond dynamically to client input, serve static files, and
handle real-time communication. Not bad!

Page 43

Challenges

1. Add a “chat log” feature: use fs.appendFile()*® to write chat messages sent through the chat
app to the filesystem.

2. Add a “previous messages” feature: using the chat log, use fs.readFile()** to send previous
messages to clients when they first connect.

38https://nodejs.org/api/fs.html#fs_fs_appendfile_path_data_options_callback
3%https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback

Page 44

https://nodejs.org/api/fs.html#fs_fs_appendfile_path_data_options_callback
https://nodejs.org/api/fs.html#fs_fs_appendfile_path_data_options_callback
https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback
https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback
https://nodejs.org/api/fs.html#fs_fs_appendfile_path_data_options_callback
https://nodejs.org/api/fs.html#fs_fs_readfile_path_options_callback

Async

Node.js was created in reaction to slow web servers in Ruby and other dynamic
languages at that time.

These servers were slow because they were only capable of handling a single
request at a time. Any work that involved I/O (e.g. network or file system access) was
“blocking”. The program would not be able to perform any work while waiting on
these blocking resources.

Node.js is able to handle many requests concurrently because it is non-blocking by
default. Node.js can continue to perform work while waiting on slow resources.

The simplest, and most common form of asynchronous execution within Node.js is
the callback. A callback is a way to specify that “after X happens, do Y”. Typically,
“X” will be some form of slow I/O (e.g. reading a file), and “Y” will be work that
incorporates the result (e.g. processing data from that file).

If you’re familiar with JavaScript in the browser, you’ll find a similar pattern all over
the place. For example:

window.addEventListener('resize', () => console.log('window has been resized!"))

To translate this back into words: “After the window is resized, print ‘window has

been resized!”” Here’s another example: {lang=js,line-numbers=off}

setTimeout(() = console.log(‘hello from the past’), 5000) “After 5 seconds, print
‘hello from the past” This can be confusing for most people the first time they
encounter it. This is understandable because it requires thinking about multiple
points in time at once.

In other languages, we expect work to be performed in the order it is written in the
file. However in JavaScript, we can make the following lines print in the reverse
order from how they are written:

const tenYears = 10 * 365 * 24 * 60 * 60 * 1000
setTimeout(() => console.log('hello from the past'), tenYears)
console.log('hello from the present')

If were were to run the above code, you would immediately see “hello from the
present,” and 10 years later, you would see “hello from the past.”

Importantly, because setTimeout() is non-blocking, we don’t need to wait 10 years to
print “hello from the present” - it happens immediately after.

Let’s take a closer look at this non-blocking behavior. We’'ll set up both an interval

Page 45

and a timeout. Our interval will print the running time of our script in seconds, and
our timeout will print “hello from the past” after 5.5 seconds (and then exit so that
we don’t count forever):

Page 46

N ool b wWwN

02- async/01-set-timeout.js

let count = 0
setInterval(() => console.log(${++count} mississippi’), 1000)

setTimeout (() => {
console.log('hello from the past!")
process.exit()

}, 5500)

process*® is a globally available object in Node.js. We don’t need to use require() to
access it. In addition to providing us the process.exit()*' method, it's also useful for
getting command-line arguments with process.argv*? and environment variables with
process.env®, We’'ll cover these and more in later chapters.

If we run this with node 01-set-timeout.js we should expect to see something like this:

node 01-set-timeout.js
1 mississippi

2 mississippi

3 mississippi

4 mississippi

5 mississippi

hello from the past!

Our script dutifully counts each second, until our timeout function executes
after 5.5 seconds, printing “hello from the past!” and exiting the script.

Let’'s compare this to what would happen if instead of using a non-blocking setTimeout(),

we use a blocking setTimeoutsync() function:

“Ohttps://nodejs.org/api/process.html
“https://nodejs.org/api/process.html#process_process_exit_code
“2https://nodejs.org/api/process.html#process_process_argv
“3https://nodejs.org/api/process.html#process_process_env

Page 35

https://nodejs.org/api/process.html
https://nodejs.org/api/process.html
https://nodejs.org/api/process.html#process_process_exit_code
https://nodejs.org/api/process.html#process_process_exit_code
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html
https://nodejs.org/api/process.html#process_process_exit_code
https://nodejs.org/api/process.html#process_process_argv
https://nodejs.org/api/process.html#process_process_env

02-async/02-set-timeout-sync.js

let count =0
setInterval(() => console.log(${++count} mississippi’), 1000)

setTimeoutSync(5500)
console.log('hello from the past!")
process.exit()

function setTimeoutSync (ms) {
const t@ = Date.now()
while (Date.now() - t@ < ms) {}

}

We’ve created our own setTimeoutSync() function that will block execution for the
specified number of milliseconds. This will behave more similarly to other blocking
languages. However, if we run it, we’ll see a problem:

node 02-set-timeout-sync.js
hello from the past!

What happened to our counting?

In our previous example, Node.js was able to perform two sets of instructions
concurrently. While we were waiting on the “hello from the past!” message, we were
seeing the seconds get counted. However, in this example, Node.js is blocked and
is never able to count the seconds.

Node.js is non-blocking by default, but as we can see, it’s still possible to block.
Node.js is single- threaded, so long running loops like the one in setTimeoutSync()
will prevent other work from being performed (e.g. our interval function to count the
seconds). In fact, if we were to use setTimeoutsync() in our APl server in chapter 1,
our server would not be able to respond to any browser requests while that function
is active!

In this example, our long-running loop is intentional, but in the future we we’ll be
careful not to unintentionally create blocking behavior like this. Node.js is powerful
because of its ability to handle many requests concurrently, but it’s unable to do that
when blocked.

Of course, this works the same with JavaScript in the browser. The reason why
async functions like setTimeout() exist is so that we don’t block the execution loop
and freeze the Ul. Our setTimeoutsync() function would be equally problematic in a
browser environment.

What we’re really talking about here is having the ability to perform tasks on
different timelines. We’'ll want to perform some tasks sequentially and others

Page 36

concurrently. Some tasks should be performed immediately, and others should be
performed only after some criteria has been met in the future.

Page 37

JavaScript and Node.js may seem strange because they try not to block by running
everything sequentially in a single timeline. However, we’ll see that this is gives us
a lot of power to efficiently program tasks involving multiple timelines.

In the next sections we’ll cover some different ways that Node.js allows us to do
this using asynchronous execution. Callback functions like the one seen in
setTimeout() are the most common and straightforward, but we also have other
techniques. These include promises, async/await, event emitters, and streams.

Callbacks

Node.js-style callbacks are very similar to how we would perform asynchronous
execution in the browser, and are just an sleight variation on our setTimeout()
example above.

Interacting with the filesystem is extremely slow relative to interacting with system
memory or the CPU. This slowness makes it conceptually similar to setTimeout().

While loading a small file may only take two milliseconds to complete, that’s still a
really long time - enough to do over 10,000 math operations. Node.js provides us
asynchronous methods to perform these tasks so that our applications can continue
to perform operations while waiting on 1/0 and other slow tasks.

Here’s what it looks like to read a file using the core £s* module:

The core fs module has methods that allow us to interact with the filesystem. Most
often we’ll use this to read and write to files, get file information such as size and
modified time, and see directory listings. In fact, we’ve already used it in the first
chapter to send static files to the browser.

02-async/03-read-file-callback.js

const fs = require('fs"')

const filename = '03-read-file-callback.js'

fs.readFile(filename, (err, fileData) => {
if (err) return console.error(err)

console.log(${filename}: ${fileData.length})
)

From this example we can see that fs.readFile() expects two arguments, filename and callback:

“4https://nodejs.org/apil/fs.html

Page 38

https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html

fs.readFile(filename, callback)
setTimeout () also expects two arguments, callback and delay:
setTimeout(callback, delay)

This difference in ordering highlights an important Node.js convention. In Node.js
official APIs (and most third-party libraries) the callback is always the last
argument.

The second thing to notice is the order of the arguments in the callback itself:

02-async/03-read-file-callback.js

fs.readFile(filename, (err, fileData) => {

Here we provide an anonymous function as the callback to fs.readrile(), and our
anonymous function accepts two arguments: err and filebata. This shows off
another important Node.js convention: the error (or nu11 if no error occurred) is the
first argument when executing a provided callback.

This convention signifies the importance of error handling in Node.js. The error is the
first argument because we are expected to check and handle the error first before
moving on.

In this example, that means first checking to see if the error exists and if so, printing
it out with console.error() and skipping the rest of our function by returning early.
Only if err is falsy, do we print the filename and file size:

02-async/03-read-file-callback.js

fs.readFile(filename, (err, fileData) => {
if (err) return console.error(err)

console.log(${filename}: ${fileData.length})
})

Run this file with node 03-read-file-callback.js and you should see output like:

node 03-read-file-callback.js
03-read-file-callback.js: 204

To trigger our error handling, change the filename to something that doesn’t exist
and you’ll see something like this:

Page 39

node 03-read-file-callback-error.js
{ [Error: ENOENT: no such file or directory, open 'does-not-exist.js']
errno: -2,
code: 'ENOENT!,
syscall: 'open’,
path: 'does-not-exist.js' }

If you were to comment out our line for error handling, you would see a different error:
TypeError: Cannot read property 'length' of undefined. Unlike the error above, this would
would crash our script.

TODQO: fs.readFileSync()

We now know how basic async operations work in Node.js. If instead of reading a
file, we wanted to get a directory list, it would work similarly. We would call
fs.readdir(), and because of Node.js convention, we could guess that the first
argument is the directory path and the last argument is a callback. Furthermore, we
know the callback that we pass should expect error as the first argument, and the
directory listing as the second argument.

02-async/04-read-dir-callback.js

fs.readdir(directoryPath, (err, filelList) => {
if (err) return console.error(err)

console.log(filelList)
}

If you're wondering why fs.readFile() and fs.readdir() are capitalized differently,
i's because readdir is a system call®*, and fs.readdir() follows its C naming
convention. fs.readFile() and most other methods are higher-level wrappers and
conform to the typical JavaScript camelCase convention.

Let’'s now move beyond using single async methods in isolation. In a typical real-
world app, we’ll need to use multiple async calls together, where we use the output
from one as the input for others.

Async in Series and Parallel

In the previous section, we learned how to perform asynchronous actions in series
by using a callback to wait until an asynchronous action has completed. In this
section, we’ll not only perform asynchronous actions in series, but we will also
perform a group of actions in parallel.

Now that we know how to read files and directories. Let’s combine these to so that
we can first get a directory list, and then read each file on that list. In short, our

Page 40

http://man7.org/linux/man-pages/man3/readdir.3.html
http://man7.org/linux/man-pages/man3/readdir.3.html

program will:

“Shttp://man7.org/linux/man-pages/man3/readdir.3.html

Page 41

http://man7.org/linux/man-pages/man3/readdir.3.html

W 00 N O U1 b W N B

1. Getadirectory list.

2. For each item on that list, print the file’s name and size (in the same alphabetical order as the
list).

3. Once all names and sizes have been printed, print “done!”

We might be tempted to write something like this:

02-async/05-read-dir-callbacks-broken.js

const fs = require('fs')

fs.readdir('./", (err, files) => {
if (err) return console.error(err)

files.forEach(function (file) {
fs.readFile(file, (err, fileData) => {
if (err) return console.error(err)

console.log(${file}: ${fileData.length})

i)
1))

console.log('done!")

})

If we run node @5-read-dir-callbacks-broken.js, we’ll see some problems with this
approach. Let’s look at the output:

node 05-read-dir-callbacks-broken.js
done!

01-set-timeout.js: 161
02-set-timeout-sync.js: 242
04-read-dir-callback.js: 166
05-read-dir-callbacks-broken.js: 306
04-read-file-sync.js: 191
03-read-file-callback.js: 204
03-read-file-callback-error.js: 197

Two problems jump out at us. First, we can see that “done!” is printed before all of
our files, and second, our files are not printed in the alphabetical order that
fs.readdir() returns them.

Both of these problems stem from the following lines:

Page 42

02-async/05-read-dir-callbacks-broken.js

files.forEach(function (file) {
fs.readFile(file, (err, fileData) => {
if (err) return console.error(err)

console.log(${file}: ${fileData.length}")

}
1)

console.log('done!")

If we were to run the following, we would have the same issue:

const seconds = [5, 2]
seconds.forEach(s => {
setTimeout(() => console.log(Waited ${s} seconds™), 1000 * s)

})

console.log('done!")

Just like setTimeout(), fs.readFile() does not block execution. Therefore, Node.js is
not going to wait for the file data to be read before printing “done!” Additionally,
even though s is first in the seconds array, “Waited 5 seconds” will be printed last. In
this example it's obvious because 5 seconds is a longer amount of time than 2
seconds, but the same issue happens with fs.readFile(); it takes less time to read
some files than others.

If we can’t use aArray.foreach() to do what we want, what can we do? The answer is
to create our own async iterator. Just like how there can be synchronous variants of
asynchronous functions, we can make async variants of synchronous functions.
Let’s take a look at an async version of Array.map()

02-async/06a-read-dir-callbacks.js

function mapAsync (arr, fn, onFinish) {
let prevError
let nRemaining = arr.length
const results = []

arr.forEach(function (item, i) {
fn(item, function (err, data) {
if (prevError) return

if (err) {
prevError = err

Page 43

return onFinish(err)

}

results[i] = data

nRemaining--
if (!nRemaining) onFinish(null, results)
)
}

If this function looks confusing, that’'s OK; it's abstract so that it can accept an
arbitrary array (arr) and iterator function (n), and it takes advantage of Node.js
conventions to make things work. We’ll go through it piece by piece to make sure
everything is clear.

For comparison, let’s look at a simple synchronous version of array.map():

function mapSync (arr, fn) {
const results = []

arr.forEach(function (item, i) {
const data = fn(item)
results[i] = data

1))

return results

}

At a high level, our mapasync() is very similar to mapsync(), but it needs a little extra
functionality to make async work. The main additions are that it (1) keeps track of
how many items from the array (arr) have been processed, (2) whether or not
there’s been an error, and (3) a final callback (onFinish) to run after all items have
been successfully processed or an error occurs.

Just like mapsync(), the first two arguments of mapasync() are arr, an array of items,
and n, a function to be executed for each item in the array. Unlike mapsync(),
mapAsync() expects fn to be an asynchronous function. This means that when we
execute £n() for an item in the array, it won’t immediately return a result; the result
will be passed to a callback.

Therefore, instead of being able to synchronously assign values to the results array in mapsync():

Page 44

arr.forEach(function (item, i) {
const data = fn(item)
results[i] data

1)

We need assign values to the results within the callback of fn() in mapAsync():

arr.forEach(function (item, i) {
fn(item, function (err, data) {
results[i] = data

1)
1))

This means that when using mapaAsync(), we expect the given iterator function, £n(),
to follow Node.js convention by accepting an item from arr as its first argument and
a callback as the last argument. This ensures that any function following Node.js
convention can be used. For example, fs.readFile() could be given as the fn
argument to mapAsync() because it can be called with the form: fs.readFile(filename,
callback).

Because the fn() callback for each item will execute in a different order than the
items array (just like our setTimeout() example above), we need a way to know when
we are finished processing all items in the array. In our synchronous version, we
know that we’re finished when the last item is processed, but that doesn’t work for
mapAsync ().

To solve this problem, we need to keep track of how many items have been
completed successfully. By keeping track, we can make sure that we only call
onFinish() after all items have been completed successfully.

Specifically, within the fn() callback, after we assign value to our results array, we
check to see if we have processed all items. If we have, we call onFinish() with the
results, and if we haven’t we do nothing.

function mapAsync (arr, fn, onFinish) {
let nRemaining = arr.length
const results = []

arr.forEach(function (item, i) {
fn(item, function (err, data) {
results[i] = data

nRemaining- -
if (!nRemaining) onFinish(null, results)
)
P

Page 45

At this point, after everything goes well, we’ll call onFinish() with a correctly ordered
results array. Of course, as we know, everything does not always go well, and we
need to know when it doesn’t.

Node.js convention is to call callbacks with an error as the first argument if one
exists. In the above example, if we call mapasync() and any of the items has an error
processing, we’ll never know. For example, if we were to use it with fs.readFile()
on files that don’t exist:

mapAsync(['filel.js', 'file2.js'], fs.readFile, (err, filesData) => {
if (err) return console.error(err)
console.log(filesData)

})

Our output would be [undefined, undefined]. This is because err is nu11, and without
proper error handling, our mapasync() function will push undefined values into the
results array. We've received a faulty results array instead of an error. This is the
opposite of what we want; we want to follow Node.js convention so that we receive
an error instead of the results array.

If any of our items has an error, we’ll call onFinish(err) instead of onFinish(null, results).
Because onFinish() will only be called with the results after all items have finished
successfully, we can avoid that with an early return:

function mapAsync (arr, fn, onFinish) {
let nRemaining = arr.length
const results = []

arr.forEach(function (item, i) {
fn(item, function (err, data) {
if (err) return onFinish(err)

results[i] = data

nRemaining--
if (!nRemaining) onFinish(null, results)
}
})

Now, if we run into an error, we’ll immediately call onFinish(err). In addition, because we
don’t decrease our nremaining count for the item with an error, nRemaining never reaches
@ and onFinish(null, results) is never called.

Unfortunately, this opens us up to another problem. If we have multiple errors,
onFinish(err) WIill be called multiple times; onFinish() is expected to be called only

Page 46

once.

Page 47

Preventing this is simple. We can keep track of whether or not we’ve encountered
an error already. Once we’ve already encountered an error and called onFinish(err),
we know that (A) if we encounter another error, we should call onFinish(err) again,
and (B) even if we don’t encounter another error, we’ll never have a complete set
of results. Therefore, there’s nothing left to do, and we can stop:

02-async/06a-read-dir-callbacks.js

function mapAsync (arr, fn, onFinish) {
let prevError
let nRemaining = arr.length
const results = []

arr.forEach(function (item, i) {
fn(item, function (err, data) {
if (prevError) return

if (err) {
prevError = err
return onFinish(err)

}

results[i] = data

nRemaining- -
if (!nRemaining) onFinish(null, results)
)
P

Now that we’ve added proper error handling, we have a useful asynchronous map()
function that we can use any time we want to perform a task concurrently for an array
of items. By taking advantage of and following Node.js convention, our mapasync() is
directly compatible with most core Node.js APl methods and third-party modules.

Here’s how we can use it for our directory listing challenge:

Page 48

02-async/06b-read-dir-callbacks-direct.js

fs.readdir('./", function (err, files) {
if (err) return console.error(err)

mapAsync(files, fs.readFile, (err, results) => {
if (err) return console.error(err)

results.forEach((data, i) => console.log(${files[i]}: ${data.length}))

console.log('done!")

1))
1))

Creating A Function

Now that we have a general-purpose async map and we’ve used it to get a directory
listing and read each file in the directory, let’'s create a general-purpose function
that can perform this task for any specified directory.

To achieve this we’ll create a new function getrileLengths() that accepts two
arguments, a directory and a callback. This function will first call fs.readdir() using
the provided directory, then it pass the file list and fs.readfFile t0 mapasync(), and once
that is all finished, it will call the callback with an error (if one exists) or the results
array - pairs of filenames and lengths.

Once we've created getFileLengths() we’ll be able to use it like this:

02-async/06¢-read-dir-callbacks-cli.js

const targetDirectory = process.argv[2] || './'

getFileLengths(targetDirectory, function (err, results) {
if (err) return console.error(err)

results.forEach(([file, length]) => console.log(${file}: ${length}))

console.log('done!")

})

process.argv iS an globally available array of the command line arguments used
to start Node.js. If you were to run a script with the command node file.js,
process.argv would be equalto ['node', 'file.js'].In this case we allow our file
to be run like node @6c-read-dir-callbacks-cli.js ../another-directory. In that
case process.argv[2] Will be ../another-directory.

Page 49

To make this work we’ll define our new getFileLengths() function:

02-async/06¢-read-dir-callbacks-cli.js

function getFilelLengths (dir, cb) {
fs.readdir(dir, function (err, files) {
if (err) return cb(err)

const filePaths = files.map(file => path.join(dir, file))

mapAsync(filePaths, readFile, cb)

1)
}

Unsurprisingly, the first thing we do is use fs.readdir() to get the directory listing. We
also follow Node.js convention, and if there’s an error, we’ll return early, and call the
callback cb with the error.

Next, we need perform a little extra work on our file list for this function to be
generalizable to any specified directory. fs.readdir() will only return file names - it
will not return the full directory paths. This was fine for our previous example,
because we were getting the file list of ./, our current working directory, and
fs.readFile() wouldn’t need the full path to read a file in the current working
directory. However, if we want this function to work for other directories, we need
to be sure to pass more than just the file name to fs.readrile(). We use the built-
in path module (require('path')) to combine our specified directory with each file
name to get an array of file paths.

After we have our file paths array, we pass it to our mapasync() function along with a
customized readrile() function. We're not using fs.readrile() directly, because we
need to alter its output a little bit.

It's often useful to wrap an async function with your own to make small changes to
expected inputs and/or outputs. Here’s what our customized readrile() function
looks like:

02-async/06¢-read-dir-callbacks-cli.js

function readFile (file, cb) {
fs.readFile(file, function (err, fileData) {

if (err) {
if (err.code === 'EISDIR') return cb(null, [file, ©])
return cb(err)
}
cb(null, [file, fileData.length])
})

}

Page 50

In our previous example, we could be sure that there were no subdirectories.
When accepting an arbitrary directory, we can’t be so sure. Therefore, we might be
calling fs.readrile() on a directory.

Page 51

If this happens, fs.readFile() Wwill give us an error. Instead of halting the whole
process, we'll treat directories as having a length of 0.

Additionally, we want our readrile() function to return an array of both the file path
andthe file length. If we were to use the stock fs.readrile() we would only get the
data.

readfFile() Will be called once for each file path, and after they have all finished, the
callback passed to mapasync() will be called with an array of the results. In this case,
the results will be an array of arrays. Each array within the results array will contain
a file path and a length.

Looking back at where we call mapAsync() within our getFileLengths() definition, we can see
that we’re taking the callback cb passed to getFileLengths() and handing it directly to
mapAsync():

02-async/06c¢-read-dir-callbacks-cli.js

function getFilelLengths (dir, cb) {
fs.readdir(dir, function (err, files) {
if (err) return cb(err)

const filePaths = files.map(file => path.join(dir, file))

mapAsync(filePaths, readFile, cb)

1))
}

This means that the results of mapAsync () will be the results of getFileLengths(). Itis
functionally equivalent to:

mapAsync(filePaths, readFile, (err, results) => cb(err, results))

Here’s our full implementation of getFileLengths():

02-async/06¢-read-dir-callbacks-cli.js

const fs = require('fs")
const path = require('path")

const targetDirectory = process.argv[2] || './'

getFileLengths(targetDirectory, function (err, results) {
if (err) return console.error(err)

results.forEach(([file, length]) => console.log(${file}: ${length}))

console.log('done!")

Page 52

1))

Page 53

function getFilelLengths (dir, cb) {
fs.readdir(dir, function (err, files) {
if (err) return cb(err)

const filePaths = files.map(file => path.join(dir, file))
mapAsync(filePaths, readFile, cb)

1)

function readFile (file, cb) {
fs.readFile(file, function (err, fileData) {

if (err) {
if (err.code === '"EISDIR') return cb(null, [file, 9])
return cb(err)
}
cb(null, [file, fileData.length])
})

function mapAsync (arr, fn, onFinish) {
let prevError
let nRemaining = arr.length
const results = []

arr.forEach(function (item, i) {
fn(item, function (err, data) {
if (prevError) return

if (err) {
prevError = err
return onFinish(err)

results[i] = data

nRemaining- -
if (!nRemaining) onFinish(null, results)
)
})

Page 54

Wrapping Up

Callbacks can be quite confusing at first because how different they can be from
working with other languages. However, they are a powerful convention that allows
us to create async variations of common synchronous tasks. Additionally, because
of their ubiquity in Node.js core modules, it’'s important to be comfortable with them.

That said, there are alternative forms of async that build on top of these concepts
that many people find easier to work with. Next up, we’ll talk about promises.

Promises

A promise is an object that represents a future action and its result. This is in
contrast to callbacks which are just conventions around how we use functions.

Let’s take a look to see how we can use fs.readfFile() With promises instead of callbacks:

02-async/07-read-file-promises.js

const fs = require('fs').promises
const filename = '07-read-file-promises.js'
fs.readFile(filename)

.then(data => console.log(${filename}: ${data.length}))
.catch(err => console.error(err))

VS:

02-async/03-read-file-callback.js

const fs = require('fs"')
const filename = '03-read-file-callback.js'

fs.readFile(filename, (err, fileData) => {
if (err) return console.error(err)

console.log(${filename}: ${fileData.length}")
})

So far, the biggest difference is that the promise has separate methods for success
and failure. Unlike callbacks that are a single function with both error and results
arguments, promises have separate

Page 55

methods then() and catch(). If the action is successful, then() is called with the result. If not,
catch() is called with an error.

However, let’s now replicate our previous challenge of reading a directory and
printing all the file lengths, and we’ll begin to see how promises can be helpful.

Real World Promises

Just looking at the above example, we might be tempted to solve the challenge like this:

02-async/08-read-dir-promises-broken.js

const fs = require('fs').promises

fs.readdir('./")
.catch(err => console.error(err))
.then(files => {
files.forEach(function (file) {
fs.readFile(file)
.catch(err => console.error(err))
.then(data => console.log(${file}: ${data.length}))

})

console.log('done!")

1))

Unfortunately, when used this way, we’ll run into the same issue with promises as
we did with callbacks. Within the files.fortach() iterator, our use of the fs.readFile()
promise is non- blocking. This means that we're going to see done! printed to the
terminal before any of the results, and we’re going get the results out of order.

To be able to perform multiple async actions concurrently, we’ll need to use
Promise.all(). Promise.all() is globally available in Node.js, and it execute an array
of promises at the same time. It's conceptually similar to the mapasync() function we
built. After all promises have been completed, it will return with an array of results.

Here’s how we can use Promise.all() to solve our challenge:

Page 56

02-async/09a-read-dir-promises.js

const fs = require('fs').promises

fs.readdir('./")
.then(filelList =>
Promise.all(
filelist.map(file => fs.readFile(file).then(data => [file, data.length]))

)
)

.then(results => {
results.forEach(([file, length]) => console.log(${file}: ${length}))
console.log('done!")

1))

.catch(err => console.error(err))

After we receive the file list fileList from fs.readdir() we use fileList.map() to transform
it into an array of promises. Once we have an array of promises, we use pPromise.all() to
execute them all in parallel.

One thing to notice about our transformation is that we are not only transforming
each file name into a fs.readrile() promise, but we are also customizing the result:

02-async/09a-read-dir-promises.js

filelList.map(file => fs.readFile(file).then(data => [file, data.length]))

If we had left the transformation as:
fileList.map(file => fs.readFile(file))

When promise.all() finishes, results will simply be an array of file data. Without also
having the file names, we no longer will know which files the lengths belong to. In
order to keep each length properly labeled, we need to modify what each promise
returns. We do this by adding .then() returning [file, data.length].

Creating A Function

Now that we've solved the challenge for a single directory, we can create a
generalized function that can be used for any directory. Once we’ve generalized it,
we can use it like this:

Page 57

02-async/09b-read-dir-promises-fn.js

const targetDirectory = process.argv[2] || './'

getFileLengths(targetDirectory)
.then(results => {
results.forEach(([file, length]) => console.log(${file}: ${length}))
console.log('done!")

1)

.catch(err => console.error(err))

Our new getFileLengths() is similar to what we did in the previous section. First we
read the directory list, and then we use fileList.map() to transform that list into an
array of promises. However, just like our callback example, we need some extra
logic to handle arbitrary directories. Before creating a promise to read a file, we use
path.join() to combine the directory with the file name to create a usable file path.

02-async/09b-read-dir-promises-fn.js

function getFilelLengths (dir) {
return fs.readdir(dir).then(fileList => {
const readFiles = filelList.map(file => {
const filePath = path.join(dir, file)
return readfFile(filePath)
)
return Promise.all(readFiles)
})
}

Just like our callback example, we use a customized readrile() function so that we
can both ensure that our final result array is made up of file path, file length pairs,
and that subdirectories are correctly handled. Here’s what that looks like:

02-async/09b-read-dir-promises-fn.js

function readFile (filePath) {
return fs
.readFile(filePath)
.then(data => [filePath, data.length])
.catch(err => {
if (err.code === "EISDIR') return [filePath, 0]
throw err

1}

Page 58

The promise version of readrile() behaves similarly, but the implementation is a little
different. As mentioned above, one of the biggest differences between callbacks
and promises is error handling. In contrast to callbacks, the success and error paths
of callbacks are handled with separate functions.

When then() is called, we can be certain that we have not run into an error. We will
have access to the file’s data, and we can return a [filePath, data.length] pair as
the result.

Our callback example was able to return early with a value if we encountered a
particular error code (e1spir). With promises, we need to handle this differently.

With promises, errors flow into a the separate catch() function. We can intercept
EIsDIR errors and prevent them from breaking the chain. If the error code is E1spIR,
we return with our modified result, [filePath, o]. By using return within a catch(), we
prevent the error from propagating. To downstream code, it will look like the
operation successful returned this result.

If any other error is thrown, we make sure not to return with a value. Instead, we re-
throw the error. This will propagate the error down the chain - successive then() calls
will be skipped, and the next catch() will be run instead.

Each call to readrile() will return a promise that results in a file path and length pair.
Therefore when we use promise.all() on an array of these promises, we will
ultimately end up with an array of these pairs - our desired outcome.

Here’s what the full file looks like:

02-async/09b-read-dir-promises-fn.js

const fs = require('fs').promises
const path = require('path")

const targetDirectory = process.argv[2] || './'

getFileLengths(targetDirectory)
.then(results => {
results.forEach(([file, length]) => console.log(${file}: ${length}))
console.log('done!")

1))

.catch(err => console.error(err))

function getFileLengths (dir) {
return fs.readdir(dir).then(fileList => {
const readFiles = fileList.map(file => {
const filePath = path.join(dir, file)
return readfFile(filePath)
}

return Promise.all(readFiles)

Page 59

1))

Page 60

}

function readFile (filePath) {
return fs
.readFile(filePath)
.then(data => [filePath, data.length])
.catch(err => {

if (err.code === "EISDIR') return [filePath, 0]
throw err
)
}
Wrapping Up

Promises give us new ways of handling sequential and parallel async tasks, and
we can take advantage of chaining .then() and .catch() calls to compose a series of
tasks into a single function.

Compared to callbacks, we can see that promises have two nice properties. First,
we did not need to use our own mapasync() function - promise.all() is globally
available and handles that functionality for us. Second, errors are automatically
propagated along the promise chain for us. When using callbacks, we need to
check for errors and use early returns to manage this ourselves.

In the next section we’ll build on top of promises to show off the use of the async and
await language features. These allow us to use promises as if they were
synchronous.

TODO: rename custom readfFile() to getFileLength()

Async & Await

What if we could have the non-blocking performance of asynchronous code, but with
the simplicity and familiarity of synchronous code? In this section we’ll show how
we can get a bit of both.

The async and await keywords allow us to treat specific uses of promises as if they
were synchronous. Here’s an example of using them to read data from a file:

Page 61

02-async/10-read-file-await.js

const fs = require('fs').promises

printLength('10-read-file-await.js")

async function printLength (file) {
try {
const data = await fs.readFile(file)
console.log(${file}: ${data.length})
} catch (err) {
console.error(err)

}
}

One cool thing about this is that we can use standard synchronous language features
like try/catch. Eventhough fs.readrile() is a promise (and therefore asynchronous),
we’re able to wrap it in a try/catch block for error handling - just like we would be
able to do for synchronous code. We don’t need to use catch() for error handling.

In fact, we don’t need to use then() either. We can directly assign the result of the
promise to a variable, and use it on the following line.

However, it’s important to note, that we can only do these things within special async
functions. Because of these, when we declare our printLength() function we use
this syntax:

async function printLength (file) { ... }

Once we do that, we are able to use the await keyword within. For the most part,
await allows us to treat promises as synchronous. As seen above, we can use
try/catch and variable assignment. Most importantly, even though our code will run
as ifthese operations are synchronous, they won’t block other executing tasks.

In many cases this can be very helpful and can simplify our code, but there are still
gotchas to be aware of. Let’s go through our directory reading challenge one last
time and take a look.

Real World Async/Await

Just like before we’re going to first get a directory list, then get each file’s length, print
those lengths, and after that’s all finished, we’ll print ‘done!’.

For those of us who are new to asynchronous programming in Node.js, it might
have felt a bit complicated to perform these tasks using callbacks or promises. Now
that we’ve seen async and await, it's tempting to think that we’ll be able to handle
this task in a much more straightforward way.

Page 62

Let’s look at how we might try to solve this challenge with async and await:

Page 63

N oo v b wN R

02-async/11-read-dir-await-broken.js

const fs = require('fs').promises
printLengths('./")

async function printLengths (dir) {
const filelList = await fs.readdir(dir)

const results = filelList.map(
async file => await fs.readFile(file).then(data => [file, data.length])

)

results.forEach(result => console.log(${result[0]}: ${result[1]}))

console.log('done!")

Unfortunately, this won't work. If we run node 11-read-dir-await-broken.js we’ll see
something like this:

node 11-read-dir-await-broken.js
undefined: undefined
undefined: undefined
undefined: undefined
undefined: undefined
undefined: undefined

What happened to our file names and lengths? The problem is our use of
fileList.map(). Even though we specify the iterator function as async so that we can
use await each time we call fs.readFile(), we can’t use await on the call to
fileList.map() itself. This means that Node.js will not wait for each promise within
the iterator to complete before moving on. Our dataFiles array will not be an array
of file data; it will be an array of promises.

When we iterate over our dataFiles array, we will print the length of each item.
Instead of printing the length of a file, we’re printing the length of a promise - which
IS undefined.

Luckily, the fix is simple. In the last section we used promise.all() to treat an array of
promises as a single promise. Once we convert the array of promises to a single
promise, we can use await as we expect. Here’s what that looks like:

Page 64

02-async/12a-read-dir-await.js

const fs = require('fs').promises

printLengths('./")

async function printLengths (dir) {
const filelList = await fs.readdir(dir)
const results = await Promise.all(
fileList.map(file => fs.readFile(file).then(data => [file, data.length]))
)
results.forEach(([file, length]) => console.log(${file}: ${length}))
console.log('done!")

}

Creating Async/Await Functions

Since printLengths() accepts a directory argument, it may look like we’ve already
created a generalized solution to this problem. However, our solution has two
issues. First, it is currently unable to properly handle subdirectories, and second,
unlike our previous generalized solutions, our printLengths() function will not return
the files and lengths - it will only print them.

Like we’ve done with our promise and callback examples, let’s create a generalized getFileLeng]
function that can work on arbitrary directories and will return with an array of file and length p

We need to keep printLengths() because we can’t take advantage of await outside of an
async function. However, within printLengths() we will call our new getFileLengths()
function, and unlike before, we can take advantage of async and await to both simplify how
our code looks and to use try/catch for error handling:

02-async/12b-read-dir-await-fn.js

const targetDirectory = process.argv[2] || './'
printLengths(targetDirectory)

async function printLengths (dir) {
try {
const results = await getFilelengths(dir)
results.forEach(([file, length]) => console.log(${file}: ${length}))
console.log('done!")
} catch (err) {
console.error(err)

ths()
airs.

Page 65

Unlike our previous promise example of getFileLengths(), we don’t need to use then() or
catch(). Instead, we can use direct assignment for results and try/catch for errors.

Let’s take a look at our async/await version of getFileLengths():

02-async/12b-read-dir-await-fn.js

async function getFilelLengths (dir) {
const filelList = await fs.readdir(dir)

const readFiles = filelList.map(async file => {
const filePath = path.join(dir, file)
return await readFile(filePath)

1))

return await Promise.all(readFiles)

}

Like before, we can do direct assignment of fileList without using then() orcatch(). Node.js
will wait for fs.readdir() to finish before continuing. If there’s an error, Node.js will throw,
and it will be caught in the try/catch block in printLengths().

Also, just like our callback and promise versions, we’re going to use a customized readFi
function so that we can handle subdirectories. Here’s what that looks like:

02-async/12b-read-dir-await-fn.js

async function readFile (filePath) {
try {
const data = await fs.readFile(filePath)
return [filePath, data.length]
} catch (err) {
if (err.code === 'EISDIR') return [filePath, 0]
throw err

We’re able to return a value from within our catch block. This means that we can return
[filePath, @] if we encounter a directory. However, if we encounter any other error
type, we can throw again. This will propagate the error onwards to any catch block
surrounding the use of this function. This is conceptually similar to how we would
selectively re-throw in the promises example.

Once readFile() has been called for each file in the fileList array, we’ll have an array of
promises, readFiles - calling an async function will return a promise. We then return await
Promise.all(readFiles), this will be an array of results from each of the readrile() calls.

le()

Page 66

And that’s all we need. If there’s an issue in any of the readfrile() calls within the
Promise.all(), the error will propagate up to where we call getFileLengths(dir) in
printLengths() - which can be caught in the try/catch there.

Here’s the full generalized solution to the challenge:

02-async/12b-read-dir-await-fn.js

const fs = require('fs').promises
const path = require('path")

const targetDirectory = process.argv[2] || './'
printLengths(targetDirectory)

async function printLengths (dir) {
try {
const results = await getFilelLengths(dir)
results.forEach(([file, length]) => console.log(${file}: ${length}))
console.log('done!")
} catch (err) {
console.error(err)

async function getFilelLengths (dir) {
const filelist = await fs.readdir(dir)

const readFiles = filelList.map(async file => {
const filePath = path.join(dir, file)
return await readFile(filePath)

1))

return await Promise.all(readFiles)

async function readFile (filePath) {
try {
const data = await fs.readFile(filePath)
return [filePath, data.length]
} catch (err) {
if (err.code === 'EISDIR') return [filePath, 0]
throw err

Page 67

Wrapping Up

We have now solved the same real-world challenge with three different techniques
for handling asynchronous tasks. The biggest differences with async/await is being
able to use a more syn- chronous coding style and try/catch for error handling.

I's important to remember that under the hood, async/await is using promises. When
we declare an async function, we’re really creating a promise. This can be seen
most clearly with our use of promise.all().

We’re now going to move beyond callbacks, promises, and async/await. Each one of
these styles are focused on performing “one and done” asynchronous tasks. We'’re
now going to turn our attention to ways of handling types of repeated asynchronous
work that are very common in Node.js: event emitters and streams.

Event Emitters

Event emitters are not new to Node.js. In fact, we’ve already used an example that’s
common in the browser:

window.addEventListener('resize', () => console.log('window has been resized!"))

It's true that like callbacks and promises, adding event listeners allow us create logic
around future timelines, but the big difference is that events are expected to repeat.

Callbacks and promises have an expectation that they will resolve once and only
once. If you recall from our callback example, we needed to add extra logic to
mapAsync() to ensure that multiple errors would not cause the callback to be called
multiple times.

Event emitters, on the other hand, are designed for use-cases where we expect a
variable number of actions in the future. If you recall from our chat example when
we built the API, we used an event emitter to handle chat message events. Chat
messages can happen repeatedly or not at all. Using an event emitter allows us to
run a function each time one occurs.

We didn’t dive into the details of that event emitter, but let’s take a closer look now.
We’ll create a command line interface where a user can type messages. We’'ll use
an event emitter to run a function each time the user enters in a full message and
presses “return”.

Page 68

Event Emitters: Getting Started

When we built our chat app, we created our own event emitter. Many core Node.js
methods provide a callback interface, but many also provide an event emitter
interface.

For our first example, we’re going to use the core module readiine. readline allows us
to “watch” a source of data and listen to “line” events. For our use-case we’re going
to watch process.stdin, a data source that will contain any text that a user types in
while our Node.js app is running, and we’re going to receive message events any
time the user presses “return.”

Each time we receive a message, we’re going to transform that message to all
uppercase and print it out to the terminal.

Here’s how we can do that:

02-async/13-ee-readline.js

const readline = require('readline")
const rl = readline.createlnterface({ input: process.stdin })

rl.on('line', line => console.log(line.toUpperCase()))

If we run it, we can get something like the following:

[N N] 02-async: node 13-ee-readline.js

node 13-ee-readline.js
finishing my coffee
FINISHING MY COFFEE
calmer than you are
CALMER THAN YOU ARE

The lower case text is our input, and the uppercase is printed out by our script.

Once we create an instance of readline, we can use its on() method to listen for
particular types of events. For right now, we’re interested in the 1ine event type.

Page 69

readline is a core Node.js module. You can see all other event types that are available in
the official Node.js documentation“®

Creating event handlers for specific event types is similar to using callbacks,
except that we don’t receive an error argument. This is just like how it works in the
browser when we use document.addEventListener(event => {}). The event handler
function does not expect an error argument.

In addition to basic logging, we can use event handlers to perform other work. In
the next section, we’ll see how we can use our event emitter to provide another
interface to the chat app we built in the first chapter.

Event Emitters: Going Further

In the first chapter we built a chat app. We could open two different browsers, and
anything we typed into one window would appear in the other. We’re going to show
that we can do this without a browser.

By making a small tweak to our read1ine example, we’ll be able to open our chat app
in a browser window and send messages to it using our terminal:

02-async/15-ee-readline-chat-send.js
const http = require('http")

const readline = require('readline")
const querystring = require('querystring')

const rl = readline.createlnterface({ input: process.stdin })
rl.on('line', line =>

http.get(
“http://localhost:1337/chat?${querystring.stringify({ message: line })}"

For this to work, we need to make sure that our server from chapter 1 is running and
listening on port 1337. You can do this by opening a new terminal tab, navigating to
the chapter 1 code directory, and running node @7-server.js. You should see a
message saying Server listening on port 1337.

The code hasn’t changed much. We have only replaced our console.log() with a call
to nttp.get(). We use the same built-in http module that we used in chapter 1.
However, this time we using http to create requests instead of responding to them.

“Shttps://nodejs.org/api/readline.html#readline_class_interface

Page 70

https://nodejs.org/api/readline.html#readline_class_interface
https://nodejs.org/api/readline.html#readline_class_interface
https://nodejs.org/api/readline.html#readline_class_interface

To ensure that our messages are properly formatted and special characters are
escaped, we also use the built-in querystring module.

We can now run our server from chapter 1, our browser window to the chat

app, run node 15-ee-readline-chat-send.js, and start typing messages into the
terminal. Each message should appear in the open browser window:

' N] 01-first-node-api: node 07-server.js

02-async: node 15-ee-readline-chat-send.js

node 15-ee-readline-chat-send.js
wonderful woman
very free-spirited

<« (G @ localhost:1337/static/chat.html w o » =
Chat Messages

wonderful woman

very free-spirited

Your message...

What’s cool about this is that it shows off how easily Node.js can be used to chain

functionality together. By creating small pieces of functionality with well defined
interfaces, it's very easy to get new functionality for free.

When we built our chat app in chapter 1, we didn’t plan on wanting a CLI client.

However, because the interface is straightforward, we were easily able to get that
functionality.

Page 71

In the next section we’'ll take it even further. We’re going to create our own event
emitter object, and not only will we be able to send messages, but we’ll be able to
receive them as well.

Event Emitters: Creating Custom Emitters

Now that we've added the capability to send messages, we can also add some
functionality to receive them.

The only thing we need to do is to make an HTTP request to our APl and log the
messages as they come in. In the previous section, we make HTTP requests to
send messages, but we don’t do anything with the response. To handle response
data from the HTTP request, we’ll need to use both a callback and an event emitter:

02-async/16-ee-readline-chat-receive.js

http.get('http://localhost:1337/sse’, res => {
res.on('data', data => console.log(data.toString()))
}

http.get() iSinteresting because it accepts a callback as its second argument - and
the response argument (res) the callback receives is an event emitter.

What’s going on here is that after we make the request, we need to wait for the
response. The response object doesn’t come with all of the data, instead we have to
subscribe to the "data" events. Each time we receive more data, that event will fire,
passing along the newest bit.

You'll notice that we call data.tostring() to log our chat messages. If we don’t do that,
we would see the raw bytes in hex. For efficiency, Node.js often defaults to a data
type called Buffer. We won’t go into detail here, but it's easy enough to convert
buffers into strings using buffer.toString().

Here’s what the full file looks like with our addition:

02-async/16-ee-readline-chat-receive.js

const http = require('http")
const readline = require('readline")
const querystring = require('querystring’)

const rl = readline.createlnterface({ input: process.stdin })
rl.on('line', line => {

http.get(
“http://localhost:1337/chat?${querystring.stringify({ message: line })}"

Page 72

Page 73

1)

http.get('http://localhost:1337/sse’, res => {
res.on('data', data => console.log(data.toString()))
}

If we run it with node 16-ee-readline-chat-receive.js, we will be able to see any
messages we type into the browser:

<« Qg @ @ localhost:1337/static/chat.html g In o » =

Chat Messages

You're lucky they left the tape deck though.

And the Creedence.

Your message...

® 01-first-node-api: node 07-server.js 02-async: node 16-ee-readline-chat-receive.js

node 16-ee-readline-chat-receive.js
data: You're lucky they left the tape deck though.

data: And the Creedence.

This works, but we can do better. Each message is prefixed with data: and is
followed by two newlines. This is expected because it's the data format of the
Server-sent events specification®’.

“Thttps://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

Page 74

https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

We’re going to create a simple interface where we can pull messages from any SSE
endpoint, and we’re going to use the power of event emitters to make this really
easy.

Instead of just making an HTTP request and logging what we receive, we’ll create
our own general- purpose event emitter that will give us custom “message” events
without the extra stuff.

To do this we’re going to create a function that returns a new event emitter.
However, before this function returns the event emitter, it will also set up the HTTP
connection to receive chat messages. When those messages come in, it will use
the new event emitter to emit them.

This is a useful pattern because it allows us to synchronously create an object that
will act asynchronously. In some ways, this is similar to how a promise works.

Here’s our new createkventSource() function:

02-async/17-ee-create-emitter.js

function createEventSource (url) {
const source = new EventEmitter()

http.get(url, res => {
res.on('data’, data => {
const message = data
.toString()
.replace(/~data: /, '")
.replace(/\n\n$/, '")

source.emit('message', message)

1}
})

return source

And here’s how we can use it:

02-async/17-ee-create-emitter.js

const source = createEventSource('http://localhost:1337/sse')

02-async/17-ee-create-emitter.js

source.on('message’, console.log)

Because we’re cleaning up the data before we pass it to our new event emitter, when

Page 75

we log messages they are trimmed down to just the parts we care about:

Page 76

_ Sl x
.

&« C © @ localhost:1337/static/chat.html

Chat Messages

They got four more detectives working on the case.

They got us working in shifts!

|chf message...

S N @ » =

' N] 01-first-node-api: node 07-server.js

node 17-ee-cregte-emitter.js

They got four more detectives working on the case.
They got us working in shifts!

02-async: node 17-ee-create-emitter.js

This is great, but one of the biggest advantages of event emitters is that they can emit
lots of different types of events. Instead of just emitting a “message” event, we can
go further and emit different events depending on the content of the message.

There’s no limit to the number or types of events that we can emit. For example,
we can look at a chat message to see if it ends with a question mark. If it does, we
can can emit a “question” event, and if not, we can emit a “statement”’ event.
Furthermore, these can be in addition to our exiting “message” event.

This is nice because it gives choice to the consumer of our event emitter. The
consumer can choose which events they would like to subscribe to.

By adding a small amount of logic to determine the event type of our additional emit() call:

Page 77

02-async/18-ee-create-emitter-custom-events.js

function createEventSource (url) {
const source = new EventEmitter()

http.get(url, res => {
res.on('data’', data => {
const message = data
.toString()
.replace(/~data: /, '")
.replace(/\n\n$%/, '")

source.emit('message’, message)

const eventType = message.match(/\?$/) ? 'question' : 'statement'
source.emit(eventType, message)

1))
1))

return source

We can choose to only listen for questions, and change our language to suit:

source.on('question', q => console.log(Someone asked, "${q}"))

Event Emitters: Wrapping Up

The big advantage of event emitters is that they allow us to handle async behavior
when the future action is either uncertain or repetitive. Unlike callbacks and
promises (and therefore async/await), event emitters are not as useful for “one and
done’-type behaviors.

In addition, by encapsulating filtering behavior into the event emitter itself, we can
make very clean interfaces for consumers.

Next up we’re going to learn about one more common form of async behavior in
Node.js which is actually a specific type of event emitter: streams.

Streams

Streams are ubiquitous within Node.js. In fact, almost all Node.js applications, no
matter how simple, use streams in some manner[“From
https://nodejs.org/docs/latest-v11.x/api/stream.html#stream_-

Page 78

api_for_stream_consumers]. Our apps are no exception, we’ve already used them a

number of times.

Page 79

Streams are a specific type of event emitter. This means that they have the same
methods available like emit() and on(). However, what makes streams so useful is
that they follow conventions about how their events are emitted.

This is easiest to see with an example. Let’s take a look at stream object that we
just encountered, the http response object.

http.get(url, res => {
res.on('data', data => {
// here's where we use the data

1)
})

In the snippet above, res is a stream, and because streams are event emitters, we
can use on() to listen to its events and receive updates.

What'’s cool about streams is that they standardize on the types of events that they
emit. This makes them very predictable to use, and allows us to chain them
together in interesting ways.

When we created our event emitter, we arbitrarily decided that we would emit a
‘message”, “question”, and “statement” event types. This means that any consumer
of our event emitter would have to look at the code or at documentation to know to
subscribe to those event types.

On the other hand, when reading from a stream, we can always expect “data”,
‘error”, and “end” events. Just by knowing that res is a stream, we know that we can
get its data with the “data” event.

For example, here’s what it looks like to download a file, using a https response stream’s eve

02-async/20-streams-download-book-cover-batch.js

const fs = require('fs"')
const https = require('https"')

const fileUrl =
"https://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png'’

https.get(fileUrl, res => {
const chunks = []

res.on('data', data => chunks.push(data)).on('end', () =>
fs.writeFile('book.png', Buffer.concat(chunks), err => {
if (err) console.error(err)
console.log('file saved!")
)
)

Page 80

nts:

http://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png%27

1))

Page 81

By default, Node.js uses Buffer objects to store and transmit data because it's more
efficient. We’ll go over Buffer more later, but for now just know that (1) Buffer. concat()
can convert an array of Buffer objects into a single Buffer, and (2) fs.writeFile() is
happy to accept a Buffer as its argument for what should be written to a file.

The way we do this makes sense when we think about the response stream as an
event emitter. We don’t know ahead of time how many times the “data” event will
be emitted. If this file is small, it could happen only once. Alternatively, if the file is
really large, it could happen many times. If there’s an error connecting, it may not
happen at all.

Our approach here is to collect all of the data “chunks” in an array, and only once
we receive the “end” event to signal that no more are coming, do we proceed to
write the data to a file.

This is a very common pattern for performing a batched write. As each chunk of
data is received, we store it in memory, and once we have all of them, we write
them to disk.

The downside of batching is that we need to be able to hold all of the data in
memory. This is not a problem for smaller files, but we can run into trouble when
working with large files - especially if the file is larger than our available memory.
Often, it's more efficient to write data as we receive it.

In addition to readable streams, there are also writable streams. For example,
here’s how we can create a new file (time.1log), and append to it over time:

const writeStream = fs.createWriteStream('time.log")
setInterval(() => writeStream.write(The time is now: ${new Date()}\n), 1000)

Writable streams have write() and end() methods. In fact, we’ve already seen these
in chapter 1. The HTTP response object is a writable stream. For most of our
endpoints we send data back to the browser using res.end(). However, when we
want to keep the connection open for SSE, we used res.urite() so that we did not
close the connection.

Let’s change our previous example to use a writable stream to avoid buffering the
image data in memory before writing it to disk:

02-async/20-streams-download-book-cover-write-stream.js

const fs = require('fs')
const https = require('https")

const fileUrl =
"https://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png'’

Page 82

http://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png%27

https.get(fileUrl, res => {
const fileStream = fs.createWriteStream('book.png")
res.on('data’, data => fileStream.write(data)).on('end', () => {
fileStream.end()

Page 83

console.log('file saved!")

1)
1)

As we can see, we were able to eliminate the chunks array that we used to store all
the file data in memory. Instead, we write each chunk of data to disk as it comes
in.

The beauty of streams is that because all of these methods and events are
standardized, we actually don’t need to listen to these events or call the methods
manually.

Streams have an incredibly useful pipe() method that takes care of all of this for
us. Let’s do the same thing, but instead of setting up our own handlers, we’ll use

pipe():

02-async/21-streams-download-book-cover.js

const fs = require('fs"')
const https = require('https"')

const fileUrl =
"https://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png'

https.get(fileUrl, res => {
res
.pipe(fs.createWriteStream('book.png'))
.on('finish', () => console.log('file saved!"))

})

Streams provide us a very efficient way of transferring data, and using pipe() we
can do this very succinctly and easily.

Composing Streams

So far we’ve seen readable streams and writable streams, and we’ve learned that
we can connect readable streams to writable streams via pipe().

This is useful for moving data from one place to another, but often times we’ll want
to transform the data in some way. We can do this using transform streams.

A transform stream behaves as both a readable stream and a writable stream.
Therefore, we can pipe a read stream to a transform stream, and then we can pipe
the transform stream to the write stream.

For example, if we wanted to efficiently transform the text in a file to upper case, we could do

Page 84

this:

http://www.fullstackreact.com/assets/images/fullstack-react-hero-book.png%27

02-async/23-streams-shout.js

const fs = require('fs")
const { Transform } = require('stream")

fs.createReadStream('23-streams-shout.js")
.pipe(shout())
.pipe(fs.createWriteStream('loud-code.txt"'))

function shout () {
return new Transform({
transform (chunk, encoding, callback) {
callback(null, chunk.toString().toUppercCase())
}
}
}

In this case we’ve created a function shout() that creates a new transform stream.
This trans- form stream is both readable and writable. This means that we can
pipe our read stream that we get from fs.createReadstream() to it, and we can also
pipe it to our write stream from fs.createWriteStream().

Our transform stream is created by a simple function that expects three arguments.
The first is the chunk of data, and we’re already familiar with this from our use of
on('data'). The second is encoding, which is useful if the chunk is a string. However,
because we have not changed any default behaviors with or read stream, we expect
this value to be “buffer” and we can ignore it. The final argument is a callback to be
called with the results of transforming the chunk. The value provided to the callback
will be emitted as data to anything that is reading from the transform stream. The
callback can also be used to emit an error. You can read more about transform
streams in the official Node.js documentation.

In this particular case we are performing a synchronous transformation. However,
because we are given a callback, we are also able to do asynchronous
transformations. This is useful if you need to look up information from disk or from
a remote network service like an HTTP API.

If we run this script, and we open the resulting file, we’ll see that all the text has
been transformed to upper case.

Of course, in real life we don’t often need to perform streaming case changes, but
this shows how we can create general-purpose modular transform streams that
can be used with a wide range of data.

In the next section we’ll take a look at a transform stream that is useful in the real world.

“8https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream

Page 85

https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream
https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream
https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream
https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream
https://nodejs.org/api/stream.html#stream_implementing_a_transform_stream

Real World Transform Streams

A common use-case in the real world is converting one source of data to another
format. When the source data is large, it's useful to use streams to perform the
transformation.

Let’s look at an example where we have a csv file, and we’d like to change a number of thing

1) “name” should be replaced with two separate “firstName” and “lastName” fields
2) the “dob” should be converted to an “age” integer field 3) the output should be
newline delimited JSON instead of csv

Here’s some data from our example people.csv file:

name, dob

Liam Jones,1988-06-26
Maximus Rau,1989-08-21
Lily Ernser,1970-01-18
Alvis 0'Keefe,1961-01-19

Here’s what we’d like people.ndjson to look like when we’re finished:

{"firstName":"Liam","lastName":"Jones","age":30}
{"firstName":"Maximus","lastName":"Rau","age":29}
{"firstName":"Lily","lastName":"Ernser","age":49}
{"firstName":"Alvis","lastName":"0'Keefe", "age" :58}
{"firstName":"Amy","lastName":"Johnson","age":59}

Just like before, the first thing that we need to do is to use fs.createReadStream() to create
a readable stream object for our people.csv file:

02-async/24-transform-csv.js

fs.createReadStream('people.csv')

Next, we want to pipe this stream to a transform stream that can parse csv data.
We could create our own, but there’s no need. We're going to use an excellent and
appropriately named module csv-parser that is available on npm. However, before
we can use this in our code, we need to run npm install csv-parser from our code
directory.

Once that is installed we can use it like so:

IS:

Page 86

const fs = require('fs')
const csv = require('csv-parser')

fs.createReadStream('people.csv')

-pipe(csv())
.on('data', row => console.log(JSON.stringify(row)))

When we run this, we’ll see that when we pipe to the transform stream created with csv() will
data events, and each logged event will be an object representing the parsed csv row:

"name":"Liam Jones","dob":"1988-06-26"}
"name";"Maximus Rau","dob":"1989-08-21"}
"name";"Lily Ernser","dob":"1970-01-18"}
{"name":"Alvis O'Keefe","dob":"1961-01-19"}
"name":"Amy Johnson","dob":"1960-03-04"}

By using console.log() on each JSON stringified row object, our output format is
newline delimited JSON, so we’re almost finished already. The only thing leftto do is
to add another transform stream into the mix to convert the objects before they are
logged as JSON.

This will work the same way as our previous transform stream example, but with
one difference. Streams are designed to work on string and Buffer types by default.
In this case, our csv-parser stream is not emitting those types; it is emitting objects.

If we were to create a default transform stream with clean():

02-async/24-transform-csv-error.js

const fs = require('fs")
const csv = require('csv-parser')
const { Transform } = require('stream")

fs.createReadStream('people.csv')
-pipe(csv())
.pipe(clean())
.on('data', row => console.log(JSON.stringify(row)))

function clean () {
return new Transform({
transform (row, encoding, callback) {
callback(null, row)
}
)
}

emit

Page 87

O 00 N oo 1 A W N PR

We would get the following error:

node 24-transform-csv-error.js
events.js:174
throw er; // Unhandled 'error' event

A

TypeError [ERR_INVALID_ARG_TYPE]: The "chunk" argument must be one of type string or\
Buffer. Received type object
atvalidChunk (_stream_writable.js:263:10)
at Transform.Writable.write (_stream_writable.js:297:21)

Instead, we need to make sure that the objectMode option is set to true:

return new Transform({
objectMode: true,
transform (row, encoding, callback) { ... }

1))

With that issue out of the way, we can create our transform() function. The two
things we need to do are to convert the single “name” field into separate “firstName”
and “lastName” fields, and to change the “dob” field to an “age” field. Both are easy
with some simple string manipulation and date math:

02-async/24-transform-csv.js

transform (row, encoding, callback) {
const [firstName, lastName] = row.name.split(' ')
const age = Math.floor((Date.now() - new Date(row.dob)) / YEAR_MS)
callback(null, {
firstName,
lastName,
age

})

Now, when our transform stream emits events, they will be properly formatted and
can be logged as JSON:

Page 88

02-async/24-transform-csv.js

const fs = require('fs")
const csv = require('csv-parser')
const { Transform } = require('stream")

const YEAR_MS = 365 * 24 * 60 * 60 * 1000

fs.createReadStream('people.csv')
-pipe(csv())
.pipe(clean())
.on('data', row => console.log(JSON.stringify(row)))

function clean () {
return new Transform({
objectMode: true,
transform (row, encoding, callback) {
const [firstName, lastName] = row.name.split(' ')
const age = Math.floor((Date.now() - new Date(row.dob)) / YEAR_MS)
callback(null, {
firstName,
lastName,
age

1))

})

Now when we run this with node 24-transform-csv.js > people.ndjson our csv rows will
be transformed and the newline delimited JSON will be written to people.ndjson:

Page 89

o ~ffullstack-node-code/02-async

node 24-transform-csv.js > people.ndjson

:"Cecile"”, "lasthame

>
{"firstName":"Palma"”,"lastName" :

Our data in our csv file is transformed and converted to ndjson

Steams: Wrapping Up

In this section we’ve seen how to use streams to efficiently transform large amounts
of data. In the real world, we’ll typically receive some large file or have to deal with
a large data source, and it can be infeasible to process it all at once. Sometimes we
need to change the format (e.g. from csv to ndjson), and other times we need to
clean or modify the data. In either case, transform streams are a great tool to have
at our disposal.

Async Final Words

In this chapter we’ve explored many of the different async patterns available in
Node.js. Not all of them are appropriate in all circumstances, but all of them are
important to be familiar with.

As we begin to build more functionality into our applications and services, it's
important to know how to be efficient and what tools we have available.

While callbacks and promises serve a similar purpose, it's important to be familiar
with both so that we can use Node.js core APIs as well as third-party modules.
Similarly, using async/await can make certain types of operations cleaner to write, but
using async functions can impose other restrictions on our code, and it's great to
have alternatives when it’s not worth the trade-off.

Additionally, we’ve learned about event emitters and streams, two higher-level
abstractions that allow us to work with multiple future actions and deal with data in
a more efficient, continuous way.

Page 90

All of these techniques will serve us well as we continue to build with Node.js.

Page 91

UNIT-5

MongoDB:-

1.Install MongoDB
2.Data Modeling

3.Query and Projection
4.Aggregation

Pipelinelntroduction:-

1. Data

2. Database

3. NoSQL

4. What is MongoDB
5.Features of MongoDB

6.How MongoDB works?
7.Database, Collection and Documents

Introduction:-
1. Data:-

Data is information such as facts and numbers used to analyze something or
make decisions. Computer data is information in a form that can be processed by

a computer.

2. Database: -

A database is an organized collection of structured information, or data, typically
storedelectronically in a computer system. A database is usually controlled by a
database management system (DBMS).

3. NoSQL:-

A database is a collection of structured data or information which is stored in a computer system

Page 92

and can be accessed easily. A database is usually managed by a Database Management
System (DBMS).

NoSQL is a non-relational database that is used to store the data in the nontabular form. NoSQ
stands for Not only SQL. The main types are documents, key-value, wide-column, and graphs

Types of NoSQL Database:

. Document-based databases
« Key-value stores

« Column-oriented databases
. Graph-based databases

NoSQL

Key-Value Column-Family

ﬁ

Graph Document

- D
T
vz,

1. Document-Based Database:

The document-based database is a nonrelational database. Instead of storing the data in
rowsand columns (tables), it uses the documents to store the data in the database. A document
database stores data in JSON, BSON, or XML documents.

Documents can be stored and retrieved in a form that is much closer to the data objects used
in applications which means less translation is required to use these data in the applications.
In theDocument database, the particular elements can be accessed by using the index value
that is assigned for faster querying.

Collections are the group of documents that store documents that have similar contents. Not all
the documents are in any collection as they require a similar schema because document
databases have a flexible schema.

Key features of documents database:

. Flexible schema: Documents in the database has a flexible schema. It means the
documents in the database need not be the same schema.

« Faster creation and maintenance: the creation of documents is easy and minimal
maintenance is required once we create the document.

Page 93

No foreign keys: There is no dynamic relationship between two documents so
documents can be independent of one another. So, there is no requirement for a

foreign key in a document database.
Open formats: To build a document we use XML, JSON, and others.

Page 94

2. Key-Value Stores:

A key-value store is a nonrelational database. The simplest form of a NoSQL database is a key-
value store. Every data element in the database is stored in key-value pairs. The data can be
retrieved by using a unique key allotted to each element in the database. The values can be
simple data types like strings and numbers or complex objects.

A key-value store is like a relational database with only two columns which is the key and the
value.

Key features of the key-value store:

. Simplicity.
. Scalability.
« Speed.

3. Column Oriented Databases:

A column-oriented database is a non-relational database that stores the data in columns
instead of rows. That means when we want to run analytics on a small number of columns,
you canread those columns directly without consuming memory with the unwanted data.

Columnar databases are designed to read data more efficiently and retrieve the data with
greaterspeed. A columnar database is used to store a large amount of data. Key features of
columnar oriented database:

« Scalability.
. Compression.
« Very responsive.

4. Graph-Based databases:

Graph-based databases focus on the relationship between the elements. It stores the data in
the form of nodes in the database. The connections between the nodes are called links or
relationships.

Key features of graph database:

. In a graph-based database, it is easy to identify the relationship between the data
by usingthe links.

« The Query’s output is real-time results.

« The speed depends upon the number of relationships among the database elements.

. Updating data is also easy, as adding a new node or edge to a graph database is a
straightforward task that does not require significant schema changes.

4.What is MongoDB?

Page 95

MongoDB is a document-oriented NoSQL database system that provides high scalability,
flexibility, and performance. Unlike standard relational databases, MongoDB stores data in

Page 96

a JSON document structure form. This makes it easy to operate with dynamic and
unstructureddata and MongoDB is an open-source and cross-platform database System.

Why Use MongoDB?

Document Oriented Storage - Data is stored in the form of JSON documents.

Index on any attribute: Indexing in MongoDB allows for faster data retrieval by
creatinga searchable structure on selected attributes, optimizing query
performance.

Replication and high availability: MongoDB'’s replica sets ensure data
redundancy bymaintaining multiple copies of the data, providing fault tolerance
and continuous availability even in case of server failures.

Auto-Sharding: Auto-sharding in MongoDB automatically distributes data
across multiple servers, enabling horizontal scaling and efficient handling of
large datasets.

Big Data and Real-time Application: When dealing with massive datasets or
applicationsrequiring real-time data updates, MongoDB’s flexibility and scalability
prove advantageous.

Rich queries: MongoDB supports complex queries with a variety of operators,
allowingyou to retrieve, filter, and manipulate data in a flexible and powerful
manner.

Fast in-place updates: MongoDB efficiently updates documents directly in their
place,minimizing data movement and reducing write overhead.

Professional support by MongoDB: MongoDB offers expert technical support
and resources to help users with any issues or challenges they may

encounter during theirdatabase operations.

Internet of Things (loT) Applications: Storing and analyzing sensor data with its
diverseformats often aligns well with MongoDB’s document structure.

Where do we use MongoDB?

MongoDB is preferred over RDBMS in the following scenarios:

Big Data: If you have huge amount of data to be stored in tables, think of
MongoDB before RDBMS databases. MongoDB has built-in solution for
partitioning and shardingyour database.

Unstable Schema: Adding a new column in RDBMS is hard whereas
MongoDB is schema-less. Adding a new field does not effect old documents
and will be very easy.

Distributed data Since multiple copies of data are stored across different
servers,recovery of data is instant and safe even if there is a hardware
failure.

Language Support by MongoDB:

MongoDB currently provides official driver support for all popular programming languageslike

C, C++, Rust, C#, Java, Node.js, Perl, PHP, Python, Ruby, Scala, Go, and Erlang.

Page 97

https://www.geeksforgeeks.org/json/

5. Features of MongoDB -

Schema-less Database: It is the great feature provided by the MongoDB. A
Schema-less database means one collection can hold different types of documents
in it. Or in other words,in the MongoDB database, a single collection can hold

multiple documents and these documents may consist of the different numbers of
fields, content, and size. It is not

Page 98

necessary that the one document is similar to another document like in the relational
databases. Due to this cool feature, MongoDB provides great flexibility to databases.
Document Oriented: In MongoDB, all the data stored in the documents instead of
tables like in RDBMS. In these documents, the data is stored in fields(key-value
pair) instead of rows and columns which make the data much more flexible in
comparison to RDBMS. Andeach document contains its unique object id.
Indexing: In MongoDB database, every field in the documents is indexed with
primary and secondary indices this makes easier and takes less time to get or
search data from the pool ofthe data. If the data is not indexed, then database
search each document with the specified query which takes lots of time and not so
efficient.

Scalability: MongoDB provides horizontal scalability with the help of sharding.
Sharding means to distribute data on multiple servers, here a large amount of data
is partitioned into data chunks using the shard key, and these data chunks are
evenly distributed across shardsthat reside across many physical servers. It will
also add new machines to a running database.

Replication: MongoDB provides high availability and redundancy with the help of
replication, it creates multiple copies of the data and sends these copies to a
different serverso that if one server fails, then the data is retrieved from another
server.

Aggregation: It allows to perform operations on the grouped data and get a single
result or computed result. It is similar to the SQL GROUPBY clause. It provides
three different aggregations i.e, aggregation pipeline, map-reduce function, and
single-purpose aggregationmethods

High Performance: The performance of MongoDB is very high and data
persistence as compared to another database due to its features like scalability,
indexing, replication, etc.

Advantages of MongoDB :

It is a schema-less NoSQL database. You need not to design the schema of the
databasewhen you are working with MongoDB.

It does not support join operation.

It provides great flexibility to the fields in the documents.

It contains heterogeneous data.

It provides high performance, availability, scalability.

It supports Geospatial efficiently.

It is a document oriented database and the data is stored in BSON documents.
It also supports multiple document ACID transition(string from MongoDB 4.0).
It does not require any SQL injection.

It is easily integrated with Big Data Hadoop

Disadvantages of MongoDB :

It uses high memory for data storage.
You are not allowed to store more than 16MB data in the documents.

Page 99

« The nesting of data in BSON is also limited you are not allowed to nest data more
than 100levels.

Page 100

6. How MongoDB works ?

MongoDB is an open-source document-oriented database. It is used to store a larger
amount ofdata and also allows you to work with that data. MongoDB is not based on the
table-like relational database structure but provides an altogether different mechanism for
storage and retrieval of data, that’'s why known as NoSQL database. Here, the term ‘NoSQL’
means ‘non- relational’. The format of storage is called BSON (similar to JSON format).
Now, let’'s see how actually this MongoDB works? But before proceeding to its working, first,
let’s discuss some important parts of MongoDB -

Drivers: Drivers are present on your server that are used to communicate with
MongoDB.The drivers support by the MongoDB are C, C++, C#, and .Net, Go,
Java, Node.js, Perl, PHP, Python, Motor, Ruby, Scala, Swift, Mongoid.

MongoDB Shell: MongoDB Shell or mongo shell is an interactive JavaScript
interface forMongoDB. It is used for queries, data updates, and it also performs
administrative operations.

Storage Engine: It is an important part of MongoDB which is generally used to
manage how data is stored in the memory and on the disk. MongoDB can have
multiple search engines. You are allowed to use your own search engine and if you
don’t want to use your own search engine you can use the default search engine,
known as WiredTiger Storage Engine which is an excellent storage engine, it
efficiently works with your data like reading,writing, etc.

Page 101

Worklng of MongoDB -The following image shows how the MongoDB works:

..

Application Layer

User Interface(FrontEnd)

Web Mobile
A A
Y Y
Server(BackEnd)
Drivers MongoDB Shell
(Node.js, Java, Python, etc.)
A A
Queries Queries
Data Layer
MongoDB Server

Storage Engine

Page 102

MongoDB work in two layers -

. Application Layer and

. Data layer

Application Layer is also known as the Final Abstraction Layer, it has two-parts,

firstis a Frontend (User Interface) and the second is Backend (server). The

frontend is the place

where the user uses MongoDB with the help of a Web or Mobile. This web and mobile
includeweb pages, mobile applications, android default applications, I0S applications, etc.
The backend contains a server which is used to perform server-side logic and also contain
drivers ormongo shell to interact with MongoDB server with the help of queries.

These queries are sent to the MongoDB server present in the Data Layer. Now, the MongoDB
server receives the queries and passes the received queries to the storage engine. MongoDB
server itself does not directly read or write the data to the files or disk or memory. After
passingthe received queries to the storage engine, the storage engine is responsible to read
or write the data in the files or memory basically it manages the data.

MongoDB, the most popular NoSQL database, is an open-source document-oriented database.
The term ‘NoSQL’ means ‘non-relational’. It means that MongoDB isn’t based on the table- like
relational database structure but provides an altogether different mechanism for storage and
retrieval of data. This format of storage is called BSON (similar to JSON format).

A simple MongoDB document Structure:

{
title:
'Geeksforgeeks',by:
'Harshit Gupta',
url: 'https://'www.geeksforgeeks.org',
type: 'NoSQL'

1

SQL databases store data in tabular format. This data is stored in a predefined data model which
is not very much flexible for today’s real-world highly growing applications. Modern
applications are more networked, social and interactive than ever. Applications are
storing more and more data and are accessing it at higher rates.

Relational Database Management System(RDBMS) is not the correct choice when it
comesto handling big data by the virtue of their design since they are not horizontally
scalable.If the database runs on a single server, then it will reach a scaling limit. NoSQL
databases are more scalable and provide superior performance. MongoDB is such a
NoSQL database that scales by adding more and more servers and increases
productivity with its flexible document model.

103

Getting Started

After you install MongoDB, you can see all the installed file inside
C:\ProgramFiles\MongoDB\ (default location). In the C:\Program
Files\MongoDB\Server\3.2\bin directory, there are a bunch of executables and a
short-description about them would be:

mongo: The Command Line Interface to interact with the db.
mongod: This is the database. Sets up the server.
mongodump: It dumps out the Binary of the Database(BSON)
mongoexport: Exports the document to Json, CSV format
mongoimport: To import some data into the DB.
mongorestore: to restore anything that you’ve exported.
mongostat: Statistics of databases

7.Database, Collection and Documents:-

Database
. Database is a container for collections.
. [Each database gets its own set of files.
« A single MongoDB server can has multiple databases.

Collection
« Collection is a group of documents.
. Collection is equivalent to RDBMS table.
« A collection consist inside a single database.
. Collections do not enforce a schema.
. A Collection can have different fields within a Documents.

Document: -

A document database has information retrieved or stored in the form of a document or
other words semi-structured database. Since they are non-relational, so they are often
referred to asNoSQL data.

The document database fetches and accumulates data in forms of key-value pairs but here,
thevalues are called as Documents. A document can be stated as a complex data structure.
Document here can be a form of text, arrays, strings, JSON, XML, or any such format. The
useof nested documents is also very common. It is very effective as most of the data created
is usually in the form of JSON and is unstructured.

Page 104

https://www.geeksforgeeks.org/mongodb-an-introduction/

Document Store Model

Relational Data Model

Consider the below example that shows a sample database
stored in both Relational andDocument Database

RELATIONAL
ID first_name last_name cell city year_of_birth location_x location_y
1 'Mary' ‘Jones' '516-555-2048"' 'Long Island’ 1986 '.73.9876' '40.7574"

1D user_id profession
10 1

‘Developer'

11 1 'Engineer’

D user_id name version
20 1 ‘MyApp' 1.0.4
21 1 'DocFinder’ 2.5.7

D user_id make year

30 1 '‘Bentley' 1973
31 1 'Rolls Royce' 1965

Page 105

DOCUMENT

first_name: "Mary",
last_name: "Jones',
cell: "'516-555-2048",
city: "Long Island",
year_of_birth: 1986,
location: {
type: "Point'",
coordinates: [-73.9876, 40.7574]
}
profession: ["Developer', "Engineer"],
apps: [
{ name: "MyApp",
version: 1.0.4 },
{ name: "DocFinder",
version: 2.5.7 }
1
cars: |
{ make: "Bentley",
year: 1973 },
{ make: "Rolls Royce",
year: 1965 }

How it works ?

Now, we will see how actually thing happens behind the scene. As we know that MongoDB is
adatabase server and the data is stored in these databases. Or in other words, MongoDB
environment gives you a server that you can start and then create multiple databases on it

using MongoDB.

Because of its NoSQL database, the data is stored in the collections and documents. Hence the

database, collection, and documents are related to each other as shown below:

Page 106

A1

Documents

Documents

Q
7]
©
a
k.
©
(m]

Collections

)
=
.9
©
2
°
o

Documents

The MongoDB database contains collections just like the MYSQL database
contains tables.You are allowed to create multiple databases and multiple
collections.

Now inside of the collection we have documents. These documents contain the data
we wantto store in the MongoDB database and a single collection can contain
multiple documents and you are schema-less means it is not necessary that one
document is similar to another.

The documents are created using the fields. Fields are key-value pairs in the
documents, it isjust like columns in the relation database. The value of the fields
can be of any BSON data types like double, string, boolean, etc.

The data stored in the MongoDB is in the format of BSON documents. Here, BSON
stands for Binary representation of JSON documents. Or in other words, in the
backend, the MongoDB server converts the JSON data into a binary form that is
known as BSON and thisBSON is stored and queried more efficiently.

In MongoDB documents, you are allowed to store nested data. This nesting of data
allows you to create complex relations between data and store them in the same
document which makes the working and fetching of data extremely efficient as
compared to SQL. In SQL, you need to write complex joins to get the data from
table 1 and table 2. The maximum sizeof the BSON document is 16 MB.

NOTE: In MongoDB server, you are allowed to run multiple databases.

For example, we have a database named GeeksforGeeks. Inside this database, we have
two collections and in these collections we have two documents. And in these documents
we storeour data in the form of fields. As shown in the below image:

Page 107

 Database

GeeksforGeeks
i Collections | T
Author Student
| Documents |
............. s R R
{---} {---}
{...} {...}
-------------------------------------- Key
e Value
el
"nan"'le": "NMomo",
"branch": "CSE",
"articles":
{
"language": "C++",
e R Nested data
"total": 200 !
N
}

Page 108

How mongoDB is different from RDBMS ?

Some maijor differences in between MongoDB and the RDBMS are as follows:

MongoDB

It is a non-relational and
document-oriented
database.

It is suitable for hierarchical
data storage.

It has a dynamic schema.

It centers around the CAP
theorem (Consistency,
Availability, and Partition
tolerance).

In terms of performance, it is
much fasterthan
RDBMS.

RDBMS

It is a relational
database.

It is not suitable for
hierarchical data
storage.

It has a predefined
schema.

It centers around ACID
properties (Atomicity,
Consistency, Isolation, and
Durability).

In terms of performance, it is
slower than
MongoDB.

109

1.Install MongoDB

o There are 3 ways to install and use MongoDB
1. Community Server(free and open source. after download use local system)

2. Visual Studio Extension

3. MongoDB Atlas(cloud hosted DB offered by MONGO DB company)

1. Let’s install MongoDB on our machines(Windows)
¢ Visit official website: http://mongodb.com
e Download the latest stable version from Community Server
e The Community server will also install the following apps
a. Community Server
b. Compass-GUI Tool for MongoDB

Install MongoDB on Windows
using MSI Requirements to Install

MongoDB on Windows
« MongoDB 4.4 and later only support 64-bit versions of Windows.

« MongoDB 7.0 Community Edition supports the following 64-bit versions of
Windows onx86_64 architecture:

. Windows Server 2022
« Windows Server 2019

. Windows 11

To install MongoDB on windows, first, download the MongoDB server and then install the
MongoDB shell. The Steps below explain the installation process in detail and provide the
required resources for the smooth download and install MongoDB.

Step 1: Go to the MongoDB Download Center to download the MongoDB Community Server.

Page 110

http://mongodb.com/
https://www.mongodb.com/download-center/community

’MongoDB Products ~ Resources Solutions +

MongoDB Atlos

MongoDB8 Enterprise Advanced

MongoDB Community Edition
MongoDB Community Server

MongoDB Community
Kubernetes Operator

Tools

Atlas SQL Interface

Mobile & Edge

Company Pricing

Version

7.0.4 (current)

Q i Sign " -

Platform

Windows x64

Pockoge

msi

More Options s««

Page 111

Here, You can select any version, Windows, and package according to your requirement.
ForWindows, we need to choose:

. Version: 7.0.4

« OS: Windows x64

. Package: msi
Step 2: When the download is complete open the msi file and click the next button in

thestartup screen:

Welcome to the MongoDB 7.0.4
2008R2Plus SSL (64 bit) Setup Wizard

The Setup Wizard vall install MongoD8 7.0.4 2008R2Plus SSL
(64 bit) on your computer. Click Next to continue or Cancel to
@3t the Setup Wizard.,

Step 3: Now accept the End-User License Agreement and click the next button:

Page 112

#5F MongoDB 4.0.5 2008R2Plus S5L (64 bit) Setup —)4

End-Usar Licensa Agreament
Please read the following license agreement carefully
Server Side Public License -

VERSION 1. OCTOBER 16_ 2018
Copyricht © 2018 MongoDB. Inc.

Ewvervone is permitted to copyv and distribute verbatim copies of this
license document, but changing it is not allowed.

TEEMS AND CO OWNS
L
I I accept the terms in the License Agreem
Print Back :II Mext I Cancel

Page 113

Step 4: Now select the complete optionto install all the program features. Here, if you can want
to install only selected program features and want to select the location of the installation, then
use the Custom option:

3 MongoDB 7.0.4 2008R2Plus SSL (64 bit) Setup o X

Choose Setup Type
Choose the setup type that best suits your needs

l Cgmplete I

All program features will be installed. Requires the most disk space.
Recommended for most users.

Custom

Allows users to choose which program features will be installed and where they
will be installed. Recommended for advanced users.

The Mongo Shell must be instalied separately for Windows installations. Download Now

Cancel

Step 5: Select “Run service as Network Service user” and copy the path of the data
directory.Click Next:
¥ MongoDB 7.0.4 2008R2Plus SSL (64 bit) Service Customizati...

Service Configuration
Specify optional settings to configure MongoDB as a service.

& install MongoD as a Service
© Run service as Network Service user

(_) Run service as a local or domain user:

Account Domawr I

count Name l-- g DF
1

Service Name: [MOOQOOB

Data Directory: [C:\Program Files\MongoDB\Server\7.0\data\

Log Directory: |C:\Program Files\MongoDB\Server\7.0\log\

Step 6: Click the /nstall button to start the MongoDB installation process:

Page 114

8 MongoDB 7.0.4 2008R2Plus SSL (64 bit) Setup

Ready to install MongoDB 7.0.4 2008R2Plus SSL (64 bit) -

Click Install to begin the installation. Click Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Back ®y Install Cancel

Step 7: After clicking on the install button installation of MongoDB begins:

Installing MongoDB 7.0.4 2008R2Plus SSL (64 bit) .

Please wait while the Setup Wizard installs MongoD8 7.0.4 2008R2Pws SSL (64 bit).

Updating component regestration

Step 8: Now click the Finish buttonto complete the MongoDB installation process:
Step 9: Now we go to the location where MongoDB installed in step 5 in your system and
copythe bin path:

Page 115

Clipboard Organize New Open

v
Name Date modified Type Size
zk access
|& InstallCompass 22-Dec-2012:29 AM Windows PowerS... c
Drive % mongo 21-Dec-20 11:59 PM Application 21,101
5 |] monged.cfg 13-Jan-2101:28 AM CFG File 1
mongod 22-Dec-20 12:24 AM Application 37.41
sktop A 7 v
| | mongod.pdb 22-Dec-2012:24 AM PDB File 378,604
EHmenty ¥ mongos 21-Dec-2011:58 PM Application 26,654
wnloads |] mongos.pdb 21-Dec-20 11:53 PM PDB File 255,01z
Isic
‘tures
leos

cal Disk (C:)

w Volume (E:)

cal Disk (F:)

Step 10: Now, to create an environment variable open system properties << Environment

Variable << System variable << path << Edit Environment variable and paste the copied link
toyour environment system and click Ok:

Edit enviranment variable >

C:"\._F"r'th on3d\Scrptsy,) eaas
CHPython38%

feSystemRoot¥hsystem32 Edit
SaSystermRootSs

TaSystemPRoot® System 32 Whem Browse...
2e3Y STEMROOTI Sy stern 32\ WindowsP owershel o100

HSYSTEMROOTHN Systerm 32\ OpenSSHY Delete

CProgram Files\Githernd
ChProgramDatat.chocolatey' bin

ChllsershK2LVAppDatatRoaming npmionode_moduleshangular-clivbin Mowve Up
ChProgram Files\ nodejsh,
Chxamppimysglibin Mewve Down

ChProgram Files\MongoDB\5Serverid.d\bin

¥ Edit text...

Step 11: After setting the environment variable, we will run the MongoDB server, i.e.
mnnnnd QA Anan tha ~rammand nraomnt and riin tha fallawinAa ~ramMmmMmanAd-

mongod
When you run this command you will get an error i.e. C./data/db/ not found.
Step 12: Now, Open C drive and create a folder named “data” inside this folder create another
folder named “db”. After creating these folders. Again open the command prompt and run the
following command:

Page 116

mongod
Now, this time the MongoDB server(i.e., mongod) will run successfully.

117

C:\Usersi\NIkhil Chhipa»mongod

{"t":{"$date":"2021-81-31TB6A:56:54.881+85:38"},"s":"I", "c":"CONTROL", "id":23285, "ctx"”
ify --sslDisabledProtocols 'none’"}

1"t {"%date”:"2021-81-31T@A:56:54.887+@5:38"},"s":"W", “c":"ASIO", "id":22681, "ctx”
¥
{"t":{"%date":"2021-61-31TB6B:56:54.0888+@5:38"},"s":"I", "c":"NETWORK", "id":4648682, "ctx"
1"t {"%date”:"2021-81-31TBB:56:54.898+85:38"},"s":"I", “c":"STORAGE", "id":4615611, "ctx"
bPath":"C:/data/db/","architecture":"64-bit","host" : "DESKTOP-L9MUQT7N"}}
1"t":{"%date":"2021-81-31T86:56:54.898+85:38"},"s":"I", "c":"CONTROL", "id":23398, "ctx”
rgetMinds" : "Windows 7/Windows Server 20808 R2"}}
1"t":{"$date”:"2021-81-31TBA:56:54.098+85:38"},"s":"I", “c":"CONTROL", "id":23483, "ctx”
gitVersion":"913d6b62actbb34dddelbll6f4161368acd8Fd13", "modules”:[], "allocator”: "tcmalloc™,”
1383,

1"t":{"$date”:"2021-81-31TBA:56:54.898+@5:38"},"s":"I", “c":"CONTROL", "id":51765, "ctx”
ndows 18","version”:"18.8 (build 14393)"}}}
{"t":{"%date":"2021-81-31TB6:56:54.898+85:38"},"s":"I", "c":"CONTROL", "id":21951, "ctx"”
1"t {"%date”:"2821-81-31T8A:56:54.157+@5:38"},"s":"I", “c":"STORAGE", "id":2227@, "ctx”
:{"dbpath":"C:/data/db/", "storageEngine"”: "wiredTiger"}}
{"t":{"%date":"2021-81-31TB6B:56:54.158+85:38"},"s":"I", "c":"STORAGE", "id":22315, "ctx"”
ize=1491M, session_max=330008,eviction=(threads _min=4,threads max=4),config base=false,statist
le manager=(close idle time=180800,close scan_interval=18,close handle minimum=258),statisti
ess],”}}

{"t":{"$date":"2021-81-31TBB:56:54.395+85:38" },"s":"I", "c":"STORAGE", "id":22438, "ctx”
95788)[3708:1468713908197888], txn-recover: [WT _VERE RECOVERY PROGRESS] Recovering log 286 thr
{"t":{"%date":"2021-81-31TB6A:56:54.631+85:38"},"s":"I", "c":"STORAGE", "id":2243@, "ctx"”

Run mongo Shell
Step 13: Now we are going to connect our server (mongod) with the mongo shell. So, keep that
mongod window and open a new command prompt window and write mongo. Now, our mongo
shell will successfully connect to the mongod.
Important Point: Please do not close the mongod window if you close this window your server
will stop working and it will not able to connect with the mongo shell.
C:\Users\NIkhil Chhipa»mongo
MongoDE shell version wd.4.3
connecting to: mongodb://127.8.8.1:27817/?compressors=disabled&gssapiServicelName=mongodb

Implicit session: session { "id" : UUID("96ccaSda-dc9f-4ad@-aabb-732ee37600c6") }
MongoDB server version: 4.4.3

The server generated these startup warnings when booting:
2821-01-28T20:56:52.570+05:38: Access control is not enabled for the database. Read and write access
configuration is unrestricted

Enable MongoDB's free cloud-based monitoring service, which will then receive and display
metrics about your deployment (disk utilization, CPU, operation statistics, etc).

The monitoring data will be available on a MongoDE website with a unique URL accessible to you
and anyone you share the URL with. MongoDE may use this information to make product

improvements and to suggest MongoDB products and deployment options to you.

To enable free monitoring, run the following command: db.enableFreeMonitoring()
To permanently disable this reminder, run the following command: db.disableFreeMonitoring()

Now, you are ready to write queries in the mongo Shell.

Page 118

Run MongoDB

Now you can make a new database, collections, and documents in your shell. Below is
anexample of how to make a new database:

The use Database name command makes a new database in the system if it does not
exist, ifthe database exists it uses that database:

use gfg

Now your database is ready of name gfg.

The db.Collection_name command makes a new collection in the gfg database and the
insertOne() method inserts the document in the student collection:
db.student.insertOne({Akshay:500})

> use gfg

switched to db gfg

» db.student.insertOne({Akshay:5607)
1

"acknowledged" : true,

"insertedId" : ObjectId("68683bf8b7388eddd54157c9")
¥
»> db.student.find().pretty()

{ " id" : ObjectId("68083bf8b7388ed4d54157c9"), "Akshay"™ : 588 }

B

2. MongoDB - Visual Studio Extension
e Search and install MongoDB Visual Studio Code - Extension
¥J File Edit Selection View Go Run Terminal Help Extension: MongoDB for VS Code - week5.0 - Visual Studio Code D& 08 — X

Y O

i

server.js M Extension: MongoDB for VS Code X . MongoDB <> index.htm > login.htm| M > m --

MongoDB for VS Code s
MongoDB f... O 1164ms)
Connect to MongoDB ... € MongoDB D 1,487,296 % % % % % (38)

% MongoDB Connect to MongoDB and Atlas directly from your VS Code environment, nav...

 univstail I

ES7 JavaScrip... @ 70K

Simple extension for N
abrahamwillia... [[IES

Mongodb-dly 0K Details Feature Contributions Changelog Runtime Status
It is a quickly administr

devlikeyou m
Aufo MongoDB 2 MongoDB for VS Code

One click to run Mong

Categories

Allen Lawrence [[EEEIN
MongoDB ID & 3K () Test and Build 'passing
S ets
Generates MongoDB IDs Snippe
Jonathan Lewis m MongoDB for VS Code makes it easy to work with your data in MongoDB
Azure Datab... @ 1.5M directly from your VS Code environment. MongoDB for VS Code is the perfect Resources
Create, browse, and up companion for MongoDB Atlas, but you can also use it with your self-managed Marketplace
% Microsoft | install | MongoDB8 instances. Repository
License

Azure Tools D 1.1M
Get web site hosting, S... mongodb.com

aM crosoft

. Jistai] Marketplace Info

Paw* ® ®0AO0 @ Golive & (2
B O Type heretosearch & H @ = om @ O @ 4 @ 30°C Mostlycloudy ~ & & 7Z W Q) ENG 21—2:723024 B2

Tl

ig.1. MongoDB - Visual Studio Extension

1. MongoDB - Atlas
e Cloud-Hosted and Fully Managed MongoDB

Page 119

Pay as you go model

e Very cost-effective

Fully secured and reliable

120

2. Data Modeling

Definition: -

Data modelling refers to the organization of data within a database and the links between related

entities. Datain MongoDB has a flexible schema model, which means:

« Documents within a single collection are not required to have the same set of fields.

« Afield's data type can differ between documents within a collection.

The primary problem in data modeling is balancing application needs, database engine
performance features, and data retrieval patterns. Always consider the application uses
of thedata (i.e. queries, updates, and data processing) as well as the fundamental
design of the data itself when creating data models.

» Advantages Of Data Modelling

Data modelling is essential for a successful application, even though at first it might just
seem likeone more step. In addition to increasing overall efficiency and improving
development cycles, data modelling helps you better understand the data at hand and
identify future business requirements, which can save time and money. In particular,
applying suitable data models:
« Improves application performance through better database strategy,
design, andimplementation.
« Allows faster application development by making object mapping easier.
« Helps with better data learning, standards, and validation.
« Allows organizations to assess long-term solutions and model data while solving
not justcurrent projects but also future application requirements, including
maintenance.

Different Types of Data Models
The three types of data models that are typically classified as follows:

1. Conceptual data model

Conceptual Data Models are rough sketches that provide the big picture, detailing
where data/information from various business processes will be stored in the

database system and therelationships they will be involved with. A conceptual data
model typically includes the entityclass, attributes, constraints, and the relationship
between security and data integrity requirements.

This model describes the types of data that should be in the system and how they relate
to one another. This model, which is typically developed with the support of the business
stakeholders, itcontains the business logic of the application, often involves domain-

Page 121

https://www.mongodb.com/docs/manual/reference/glossary/#std-term-document
https://www.mongodb.com/docs/manual/reference/glossary/#std-term-collection

driven design (DDD) principles, and serves as the foundation for one or more of the
following models. The primary purpose of the conceptual model is to identify the
information that will be essential to an organization.

122

2. Loagical data model

Logical data models provide more detailed, subjective information about data set
relationships.At this stage, we can clearly connect what data types and relations are
used. Logical data models are generally missed in rapid business contexts, having their
utility in data-driven initiatives requiring important procedure execution.

The logical data model specifies how data will be organized. The relationship between
entities isestablished at a high level .In this model, and a list of entity properties is also
provided. This data model can be viewed as a “blueprint” for the data that will be used.

3. Physical data model

The schemallayout for data storage routines within a database is defined by the
physical datamodel. A physical data model is a ready-to-implement plan that can be
stored in a relational database.

The physical data model is a representation of how data will be stored in a particular
database management system (DBMS). In this approach, main and secondary keys in a
relational database are defined, or the decision to include or connect data in a document
database such as MongoDB based on entity relationships is made. This is also where
you will define the data typesfor each of your fields, which will create the database
structure.

» Data Model Design (or) Types
For modelling data in MongoDB, two strategies are available. These strategies are
different and itis recommended to analyze our scenario for a better flow. The two
methods are as follows:
1. Embedded Data Model
2. Normalized Data Model

1.Embedded Data Model

This method, also known as the de-normalized data model, allows you to have
(embed) all ofthe related data in a single document.

For example, if we obtain student information in three different documents,
Personal_details,Contact, and Address, we can embed all three in a single one, as
shown below.

Page 123

{
_id:,
Std_ID: "987STD001"
Personal_details:{
First_Name:
"Rashmika",
Last_Name: "Sharma",
Date_Of_Birth: "1999-08-26"
b
Contact: {
e-mail:
"rashmika_sharma.123@gmail.com",
phone: "9987645673"
%
Address: {
city: "Karnataka",
Area:
"BTM2ndStage",
State: "Bengaluru”

124

mailto:rashmika_sharma.123@gmail.com

2.Normalized Data Model (or) Reference Data Model:

In a normalized data model, object references are used to express the relationships
between documents and data objects. Because this approach reduces data duplication,
it is relatively simple to document many-to-many relationships without having to repeat
content. Normalizeddata models are the most effective technique to model large

hierarchical data with cross- collection relationships.
Student:

_id: <Studentld101>,
Std_ID:
"10025AE336"

}

Personal Details.

_id: <Studentld102>,
stdDoclID: " Studentld101",
First Name: "Rashmika",
Last_ Name: "Sharma",
Date_Of Birth: "1999-08-
26"

}

Contact:

_id: <Studentld103>,

stdDocID: "

Studentld101",

e-mail:
"rashmika_sharma.123@gmail.com",
phone: "9987645673"

Address:

{
_id: <Studentld104>,
stdDoclID: "
Studentld101",city:
"Karnataka",

Area:
"BTM2ndStage",
State: "Bengaluru”

Considerations while designing Schema in MongoDB

« Design your schema according to user requirements.

. Combine objects into one document if you will use them together. Otherwise
separate them(but make sure there should not be need of joins).

. Duplicate the data (but limited) because disk space is cheap as compare to compu
time.

125

mailto:rashmika_sharma.123@gmail.com

Do joins while write, not on read.
Optimize your schema for most frequent use cases.
Do complex aggregation in the schema.

Page 126

Example

Suppose a client needs a database design for his blog/website and see the differences betweel
RDBMS and MongoDB schema design. Website has the following requirements.

« Every post has the unique title, description and url.
« Every post can have one or more tags.
. Every post has the name of its publisher and total number of likes.

« Every post has comments given by users along with their name, message, data-
time andlikes.

« On each post, there can be zero or more comments.

In RDBMS schema, design for above requirements will have minimum three tables.

comments 8 post £ tag_list |2
B & 6 e- |/ BmmEa| B %R
’ a
post_id = title = post_id
by _user description tag
message url
data_time likes
likes post_by

While in MongoDB schema, design will have one collection post and the following structure -

Page 127

{
_id: POST_ID
title: TITLE_OF_POST,
description: POST_DESCRIPTION,
by: POST_BY,
url: URL_OF_POST,
tags: [TAG1, TAG2, TAG3],
likes: TOTAL_LIKES,
comments: [
{
user:'"COMMENT_BY",
message: TEXT,
dateCreated: DATE_TIME,
like: LIKES

3

{
user:'COMMENT_BY',
message: TEXT,
dateCreated: DATE_TIME,
like: LIKES

}
]

Page 128

}

So while showing the data, in RDBMS you need to join three tables and in MongoDB, data will

be shown from one collection only.

» Connect MongoDB: -
Mongodb compass

e Connect with compass app
e Understand basics of compass app
e Get your hands-on examples with

compassHostname:-Localhost
Port:-27017

Visual Studio:-

e Connect with Visual Studio Code Extension
e Understand basics of visual Studio Code Extension
e Get your hands-on examples with Visual Studio Code Extension

Connect:- mongodb://localhost:27017

Shell:mongos
h(Or)

Mongod creating server and mongo for shell.

» CURD Operation:-

Creating and drop database:-

use anu;//creating

show dbs;//display all db
db//current db
db.dropDatabase();//deleting

dbCreating and drop collections:-

Syntax:-

Page 129

e db.createCollection(name,options)//creating
e db.collection.drop()
e db.collection.insertOne({key:"value})

Page 130

Ex:-

e db.createCollection(“products”);
e db.products.drop()

Inserting Documents into

Collections:-Syntax:-

e db.collection_name.insert({*name”:’aaa’”})//one
”."aaa’}, {"name”.”bbb”}])//many

e db.collection_name.insertMany([{*"name”:

e Example:- db.aaa.insert({"name”:.’aaa’})//one

e db.bbb.insertMany([{"name":"aaa"}, {"name":"bbb"}])//many
Update:-

e db.bbb.update({"name":"bbb"},{$set:{"name":"ccc","isActive":true}});

Read:-

db.bbb.find();

db.bbb.findOne();

db.bbb.find({"name":"ccc"});
db.bbb.findOneAndReplace({"name":"ccc"},{"name":"eee"});
db.bbb.findOneAndDelete({"name":"eee"});

Delete:-

db.orders.deleteOne({"name":"aaa"})

/*
Db.student.insertOne({name:”anusha’})
Db.student.find().pretty()

*/

Page 131

3. Query and Projection

MongoDB Query
MongoDB Query Operators

Similar to SQL MongoDB have also some operators to operate on data in the collection.
MongoDBquery operators check the conditions for the given data and logically compare the
data with the help of two or more fields in the document.

Query operators help to filter data based on specific conditions. E.g., $eq,$and,$exists, et

MongoDB provides the function names as db.collection _name.find() to operate query
operationon database.

Syntax:

db.collection_name.find()

Example:

db.article.find()

Types of Query Operators in MongoDB
The Query operators in MongoDB can be further classified into 8 more types. The 8 types
ofQuery Operators in MongoDB are:

Comparison Operators

Logical Operators

Array Operators

Evaluation Operators

Element Operators

Bitwise Operators

Geospatial Operators

Comment Operators

XNoGaR~LN =

1. Comparison Operators

The comparison operators in MongoDB are used to perform value-based comparisons in
gueries.The comparison operators in the MongoDB are shown as below:

Page 132

\J

https://www.geeksforgeeks.org/sql-tutorial/
https://www.geeksforgeeks.org/mongodb-database-collection-and-document/
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#1-comparison-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#2-logical-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#3-array-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#4-evaluation-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#5-element-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#6-bitwise-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#7-geospatial-operators
https://www.geeksforgeeks.org/mongodb-query-and-projection-operator/#8-comment-operators

Comparis

on Description Syntax
Operato
r

$eq Matches values that are equal to a { field: { $eq: value } }

specified value.

Matches all values that are not equal to a

$ne specified value. { field: { $ne: value } }

$lt Matches values that are less than a { field: { $It: value } }
specified value.

$gt Matches values that are greater than a { field: { $gt: value } }
specified value.

Matches values that are less than or

field: { $lte: val
$lte equal to aspecified value. { field: { 3lte: value 3 3

Matches values that are greater than or { field: { $gte: value 3 3

$gte equal to aspecified value.
$in Matches any of the values specified in an { field: ivﬂ:"u:e[;\:a'“eb'
array. 133

Documents:

db.books.insertMany([{"p_name":"book","price":50},{"p_name":"pen","price":100},{"p_name
":"pencilbox","price":500},{"p_name":"ball","price":200}]);

MongoDB Comparison Operators

1. $eq

The $eq specifies the equality condition. It matches documents where the value of a field equals the
specifiedvalue.

Syntax:

. |{ <field> : { $eq: <value>}}

Page 133

Example:

db.books.find ({ price: { $eq: 200} })

Page 134

The above example queries the books collection to select all documents where the value of the price
filed equals300.

PROBLEMS (1 OUTPUT ~ DEBUG CONSOLE TERMINAL Bl mongosh +~ M @ ~ X
}
query> db.books.find ({ price: { $eq: 200 } })
[
{

_id: ObjectId('662c@59cchfod16226117b86"),
p_name: 'ball’,
price: 200
}
]
query> I
. ___ ___ __ _____ ____ __ . . -2 _ _ - o |

2. 89t

The $gt chooses a document where the value of the field is greater than the specified value.

Syntax:

{ field: { $gt: value } }

Example:

db.books.find ({ price: { $gt: 200} })

’o File Edit Selection View Go Run Terminal query.comparision:{"$oid":"662c055fcbf0d16226117b81"} json - week6.0 - Visual ..] d (B | 08 — X
MONGODB } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json X } query.comparision:{"$oid":"662c055fcbfod16226117b8 > [0 ---
2
v CONNECTIONS } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json > ...
v @ localhost:27017... 1 —
> & admin 2 { =
> & anu2 3 =2
Ks = 4 "$oid": "662c0@55fcbf0d16226117b81"
> & anu3
5 1
> 8 anud 6 "p_name": "pencilbox",
> & anu5 7 "price": 500
> & config 8 }
> & local
v & query
> W bbb
v & comparision
0 v @ Documents 4 PROBLEMS ({ OUTPUT DEBUG CONSOLE TERMINAL B mongosh +~ [W ~ X
"662c055fcbf0...
"662c055fcbf0...]
"662c055fchfo... query> db.books.find ({ price: { $gt: 200 } })
| "662c055fcbf0... [{
> B Schema _id: ObjectId('662c859ccbfed16226117b85"),
> R Indexes p_name: 'pencilbox',
price: 500
}
> PLAYGROUNDS]
Bl > HELP AND FEEDBACK query> I

Panw* ® ®1A0 Ln2 Col1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2

3 ; - - N i 01:22
28 O Type here to search N =f} e m a G @ ﬂ w3 (] ol 0 31°C Partycloudy ~ & B 4z W dx ENG e §)

3.5gte

The $gte choose the documents where the field value is greater than or equal to a specified value.

Syntax:

Page 135

. |{ field: { $gte: value } }

136

Example:

db.books.find ({ price: { $gte: 250} })

’Q File Edit Selection View Go Run Terminal query.comparision:{*$oid":"662c055fcbf0d 16226117b81"} json - week6.0 - Visual .. I[J G (B | 02 — X
MONGODB } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json X } query.comparision:{"$oid":"662c055fcbfod16226117b8 > [0 -
2
 CONNECTIONS } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json > ...
v @ localhost:27017... 1 - —
> & admin 2 { =
> 8 anu2 3 -id {
1Ks 4 "$oid": "662c055fcbf0d16226117b81"
> & anu3
5 s
> & anu4 - i S
> & anus PROBLEMS ({1 OUTPUT ~ DEBUG CONSOLE TERMINAL B)mongosh +~ [M W ~ X
> & config
5 & local p_name: 'pencilbox',
rice: 500
v & query } P
> W bbb
v B comparision query> db.books.find ({ price: { $gte: 200 } })
0 v (@ Documents 4 [(
fob2csoiebiU _id: ObjectId('662c859ccbfed16226117b85"),
"662c055fcbf0... p_name: 'pencilbox’,
"662C055fcbf0... price: 500
| "662c055fchf0... %’
> B Schema _id: ObjectId('662c@59ccbfed16226117b86"),
> R Indexes p_name: 'ball’,
price: 200
}
> PLAYGROUNDS]
B > HELP AND FEEDBACK query> I

Panw*r ® ®1A0 Ln2 Col1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2

3 : = .) = 0124
28 O Type here to search N g e m ﬁ G @ ﬂ El] =) ‘,Q 31°C Partlycloudy ~ & T Z ®mdx ENG . 050, %j'

4.51n

The $in operator choose the documents where the value of a field equals any value in the specified arr;

Syntax:

{filed: { $in: [<value1>, <value2>,] } }

Example:

db.books.find({ price: { $in: [100, 200] } })

Page 137

) File Edit Selection View

MONGODB

v CONNECTIONS
v 0 localhost:27017...
admin
anu2
anu3
anu4
anu5

config

local
query
> bbb
Vv & comparision
0 v @@ Documents 4
"662c055fcbfO...
"662c055fcbfO...
"662c055fcbf0...
"662c055fcbf0...
> BB Schema
> R Indexes

NN AN

> PLAYGROUNDS
> HELP AND FEEDBACK

1-9 anu*

® ®1A0

Go Run Terminal query.comparision:{"$oid":"662c055fchf0d 16226117b81"} json - week6.0 - Visual ..] & (B | 08 — X

} query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json X query.comparision:{"$oid":"662c055fcbf0d16226117b8 [> m -

} query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json > ...

1.
2 f
3 g o
4 "$o0id": "662c055fcbf0d16226117b81"
5 b
PROBLEMS ({1 OUTPUT ~ DEBUG CONSOLE ~ TERMINAL [mongosh +~ [W ~ X
p_name: 'ball’,
price: 200
}
query> db.books.find({ price: { $in: [160, 200] } })
[
{
_id: ObjectId('662c059ccbfed16226117b84"),
p_name: ‘pen’,
price: 100
}J
{
_id: ObjectId('662c059ccbfod16226117b86"),
p_name: 'ball’,
price: 200
}
1
query> I

Ln 2, Col 1 LF {} JSON @ Golive & [2

28 O Type here to search =

581t

Spaces:2 UTF-8

ﬁ G @ ‘ El ' il ‘“ 31°C Partly cloudy ~ &

= 0125
O 7 A ENG 0o %7

The $It operator chooses the documents where the value of the field is less than the specified value.

Syntax:

{ field: { $It: value } }

Example:

db.books.find ({ price: { $It: 20} })

Page 138

Edit Selection View

X File
MONGODB

v CONNECTIONS
v 0 localhost:27017...
admin
anu2
anu3
anu4
anu5

config

local
query
> bbb
Vv & comparision
0 v @@ Documents 4
"662c055fcbfO0...
"662c055fcbfO...
"662c055fcbf0...
| "662c055fcbf0...
> BB Schema
> R Indexes

NN AN

(]

> PLAYGROUNDS
> HELP AND FEEDBACK
Panur @

Go Run Terminal query.comparision:{"$oid":"662c055fchf0d 16226117b81"} json - week6.0 - Visual ..] & (B | 08 — X

{} query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json X } query.comparision:{"$oid":"662c055fcbfod16226117b8 > [0 -

} query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json > ...

q = —
2 f
3 g o
4 "$o0id": "662c055fcbf0d16226117b81"
5 b
PROBLEMS ({1 OUTPUT ~ DEBUG CONSOLE ~ TERMINAL [mongosh +~ [W ~ X
p_name: 'ball’,
price: 200
}
query> db.books.find ({ price: { $1t: 268 } })
[
{
_id: ObjectId('662c859ccbfed16226117b83"),
p_name: 'book"',
price: 50
}J
{
_id: ObjectId('662c059ccbfod16226117b84"),
p_name: ‘'pen’,
price: 100
}
1
query> I

28 O Type here to search

Ln2,Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2

. 0126
(“» 31°C Partlycloudy ~ & & 7 W dx NG o0, %)

Page 139

6. S$lte

The $lte operator chooses the documents where the field value is less than or equal to a specified valu

Syntax:

{ field: { $lte: value } }

Example:

db.books.find ({ price: { $lte: 250} })

3§ File Edit Selection View Go Run Terminal query.comparision:{*$oid":"662c055fcbf0d 16226117b8 1"} json - week6.0 - Visual .. I &g (B | 08 — X
MONGODB } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json X query.comparision:{"$oid":"662c055fchf0d16226117b8 [> m .-
2
 CONNECTIONS } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json > ...
v 0 localhost:27017... 1 2
> & admin PROBLEMS ({1 OUTPUT DEBUG CONSOLE TERMINAL Bl mongosh +~ [W ~ X
> & anu2
1K+ —
> & anu3 {
S 2 anud _id: Ob]?ctl?(662c059ccbf0d16226117b84"),
p_name: 'pen',
> & anus price: 100
> & config }
> & local] .)
A ([quer‘y) db.books.find ({ price: { $lte: 250 } })
> @ bbb {
v B comparision _id: ObjectId('662c059ccbfed16226117b83"),
0 v @ Documents 4 pLiname;: *ibooks;
price: 50
"662c055fcbf0... }
"662c055fcbfO... {
"662C055fchf0... _id: ObjectId('662c059cchfod16226117b84"),
. p_name: ‘pen’,
662c055fcbf0... price: 100
> BB Schema }s
> R Indexes {

_id: ObjectId('662c059ccbf0d16226117b86"),
p_name: 'ball’,
price: 200

> PLAYGROUNDS
> HELP AND FEEDBACK }
Panw* ® ®1A0 Ln2 Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & [2

o

d ; - - N ~ 0127
28 O Type here to search N i e - ﬁ @ @)o @ (] al “’ 31°C Partlycloudy ~ & O 7 Wmdx NG . %)

7. Sne

The $ne operator chooses the documents where the field value is not equal to the specified value.

Syntax:

{ <field>: { $ne: <value>} }

Example:

db.books.find ({ price: { $ne: 500} })

Page 140

w

% File Edit Selection View Go Run Terminal query.comparision:{"$oid":"662c055fcbf0d 16226117b81"}json - week6.0 - Visual ..] & (B 03 — X

MONGODB } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json X query.comparision:{"$oid":"662c055fcbf0d16226117b8 [> m -
: CONNECTIONS } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json > ...
v @ localhost:27017... 1 ’ —
> & admin PROBLEMS (1 OUTPUT DEBUG CONSOLE TERMINAL B mongosh +~ [@ ~ X
> & anu2
2 > & anu3 p_name: 'ball’,
S & anud price: 200
> & anu5] b
> & config query> db.books.find ({ price: { $ne: 500 } })
> & local [
v & query { — . ‘ .
_id: ObjectId('662c059ccbfed16226117b83"),
> @ bbb p_name: ‘book',
v B comparision price: 50
0 v @@ Documents 4 %’
"662c055fcbf.. _id: ObjectId('662c059ccbfod16226117b84"),
"662c055fcbf0... p_hame: 'pen’,
"662c055fchf0... price: 160
"662c055fcbf0... %’
> B Schema _id: ObjectId('662c859ccbfod16226117b86"),
> R Indexes p_name: 'ball’,
price: 200
> PLAYGROUNDS] }
Bl > HELP AND FEEDBACK query> I

Panw* ® ®1A0 Ln2,Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2
28 O Type here to search AN 3+ Bi e M ﬁ G @ ‘ @ L} P ‘“ 31°C Partlycloudy ~ & T «~ ™ dx ENG 27_%:327024 %‘;

8. Snin

The $nin operator chooses the documents where the field value is not in the specified array or does no
exist.

Syntax:

{field : { $nin: [<value1>, <value2>, ..]}}

Example:

db.books.find ({ price: { $nin: [50, 150, 200]}})

Page 141

File Edit Selection View

o

MONGODB

v CONNECTIONS
v 0 localhost:27017...
admin
anu2
anu3
anu4
anu5

config

local
query
> W@ bbb

Vv & comparision

NN AN

(]

v @@ Documents 4
"662c055fcbfO0...
"662c055fcbfO...
"662c055fcbf0...

| "662c055fcbf0...

> BB Schema

> R Indexes

> PLAYGROUNDS
> HELP AND FEEDBACK

1-9 anu*

@

Go Run Terminal query.comparision:{"$oid":"662c055fchf0d 16226 117b81"} json - week6.0 - Visual ... I[J G (B | 03 X

{} query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json X } query.comparision:{"$oid":"662c055fcbfod16226117b8 > [0 -

} query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json > ...
1

mongosh +v [D @[~ X

PROBLEMS (1 OUTPUT ~ DEBUG CONSOLE TERMINAL
p_name: ‘'pen’,
price: 100
e
{
_id: ObjectId('662c@59ccbfed16226117b86"),
p_name: 'ball’,
price: 200
}
]
query> db.books.find ({ price: { $nin: [50, 150, 200] } })
[
{
_id: ObjectId('662c059ccbf0d16226117b84"),
p_name: 'pen',
price: 100
e
{
_id: ObjectId('662c059ccbf@d16226117b85"),
p_name: 'pencilbox’,
price: 500
}
]
query> I

28 O Type here to search

Ln2,Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2

(“» 31°C Partly cloudy A &

Page 142

. 0128
x .
E O 7N a0 %}

2.MongoDB Logical Operator

Logical Operators

The logical operators in MongoDB are used to filter data based on expressions that
evaluate totrue or false.
The Logical operators in MongoDB are shown in the table below:

Logica
| Descripti Syntax
Operat on
or
Returns all the documents that { $and: [{ <expression1> }, {
. <expression2> } , ..., {
$an satisfy all the <expressionN> }
d conditions. 1}
Inverts the effect of the query expression { field: { $not: { <operator-
$no and returnsdocuments that do not match expression>
t the query expression. IS
Returns the documents from the query { $22X£és<;;np2risii°”1> {} {
$or that matcheither one of the <expressionN> } |
conditions in the query. 13
Returns the documents that fail to { gnor: [{ <expressioni> }, {
- <expression2> }, ... , {
$no match bothconditions. <expressionN> }
r 17
$and

The $and operator works as a logical AND operation on an array. The array should be of one or more
expressionsand chooses the documents that satisfy all the expressions in the array.

Syntax:

{$and: [{ <exp1>}, {<exp2>}, .|}

Example:

. |db.books.find ({ $and: [{ price: { $ne: 500 } }, { price: { $exists: true } }1})

Page 143

% File Edit Selection View Go Run Terminal query.comparision:{"$oid":"662c055fcbf0d 16226117b81"}json - week6.0 - Visual ..] & (B 03 — X

MONGODB } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json X query.comparision:{"$oid":"662c055fcbf0d16226117b8 [> m -
2
 CONNECTIONS } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json > ...
v @ localhost:27017... 1 <
> & admin PROBLEMS ({1 OUTPUT DEBUG CONSOLE TERMINAL B mongosh +~ [@ ~ X
> & anu2
L > & anu3 p_name: 'pencilbox’,
S & anud ; price: 500
> & anu5]
> & config query> db.books.find ({ $and: [{ price: { $ne: 500 } }, { price: { $exists: true } } 1 })
> & local [
v & query {
= _id: ObjectId('662c059ccbf@d16226117b83"),
> @ bbb p_name: ‘book',
Vv & comparision price: 50
0 v @@ Documents 4 %’
foc2cloorebiU _id: ObjectId('662c059ccbfed16226117b84"),
"662c055fcbf0... p_hame: 'pen’,
"662c055fchf0... price: 100
"662c055fcbf0... %’
> B Schema _id: ObjectId('662c@59ccbfed16226117b86"),
> R Indexes p_name: 'ball’,
price: 200
}
> PLAYGROUNDS]
Bl > HELP AND FEEDBACK query> I
Panw* ® ®1A0 Ln2,Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2
28 O Type here to search N =i e - ﬁ G @ ‘ @l (] P ‘“ 31°C Partlycloudy A & T 7z ® dx ENG 27_%:322024 %ﬁv
$not

The $not operator works as a logical NOT on the specified expression and chooses the documents that
are notrelated to the expression.

Syntax:

{ field: { $not: { <operator-expression>}}}

Example:

db.books.find ({ price: { $not: { $gt: 200} }})

Page 144

% File Edit Selection View Go Run Terminal query.comparision:{"$oid":"662c055fcbf0d 16226117b81"}json - week6.0 - Visual ..] & (B 03 — X

MONGODB } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}.json X query.comparision:{"$oid":"662c055fcbf0d16226117b8 [> m -
2
 CONNECTIONS } query.comparision:{"$oid":"662c055fcbf0d16226117b81"}json > ...
v @ localhost:27017... 1 <
> & admin PROBLEMS ({1 OUTPUT DEBUG CONSOLE TERMINAL B mongosh +~ [@ ~ X
> & anu2
il.<7 > & anu3 p_name: 'ball’,
S & anud ; price: 200
> & anu5]
> & config query> db.books.find ({ price: { $not: { $gt: 200 } } })
> & local [
v & query {
= _id: ObjectId('662c059ccbf@d16226117b83"),
> @ bbb p_name: ‘book',
Vv & comparision price: 50
0 v @@ Documents 4 %’
foc2cloorebiU _id: ObjectId('662c059ccbfed16226117b84"),
"662c055fcbf0... p_hame: 'pen’,
"662c055fchf0... price: 100
"662c055fcbf0... %’
> BB Schema _id: ObjectId('662c859ccbfed16226117b86'),
> R Indexes p_name: 'ball’,
price: 200
}
> PLAYGROUNDS]
Bl > HELP AND FEEDBACK query> I
Panw* ® ®1A0 Ln2,Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2
28 O Type here to search N =i e - ﬁ G @ ‘ @l (] P ‘“ 31°C Partlycloudy A & T 7z ® dx ENG 27_%:3:024 %ﬁv
$nor

The $nor operator works as logical NOR on an array of one or more query expression and chooses the
documentsthat fail all the query expression in the array.

Syntax:

{ $nor: [{ <expression1>}, { <expresion2>}, ..]}

Example:

db.books.find ({ $nor: [{ price: 200 }, { p_name:"pen" }] })

Page 145

% File Edit Selection View Go Run Terminal query.comparision:{"$oid":"662c055fcbf0d 1622611780} json - week6.0 - Visual ... [Gd (B | 08 — X

MONGODB [} query.comparision:{"$oid":"662c055fcbf0d16226117b80"}.json X } query.comparision:{"$oid":"662c055fcbf0d16226117b8 [> m -
o
 CONNECTIONS } query.comparision:{"$0id":"662c055fcbf0d16226117b80"}json > ...
v 0 localhost:27017... 1 {
> & admin 2 "_id": {
S e i : $oid": "662c055fcbf0d16226117b80
K+ E
> @ anu3 5 "p_name": "pen",
> & anud
> & anu5 PROBLEMS {1 OUTPUT DEBUG CONSOLE TERMINAL) mongosh 4+~ [M W ~ X
> & config
> & local ReferenceError: pen is not defined
query> db.books.find ({ $nor: [{ price: 200 }, { p_name:"pen" }] })
v & query [
> @m bbb {
v B comparision _id: ObjectId('662c059ccbf0d16226117b83"),
o v @@ Documents 4 p_name: "book”,
price: 50
"662c055fcbf0... ¥,
"662c055fcbf0... {
"662C055fchfO... _id: ObjectId('662c@59cchf@d16226117b85"),
name: ‘pencilbox’
"662C055fchf0... . 5 ’
! price: 500
> BB Schema }
> R Indexes]
query> I

> PLAYGROUNDS
> HELP AND FEEDBACK

Pair ® ®1A0 Ln1,Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2

! e = 2 0138
28 O Type here to search N j=1i e = Q G @ ﬂ @ (] l (". 31°C Partlycloudy ~ & @ % m dx ENG i %

Page 146

$or

It works as a logical OR operation on an array of two or more expressions and chooses documents tha
meet theexpectation at least one of the expressions.

Syntax:

{$or: [{<exp_1>}, {<exp_2>}, ..., {<exp_n>}]}
Example:

db.books.find ({ $or: [{ p_name: "book" }, { price: 500 }1})

% File Edit Selection View Go Run Terminal query.comparision:{*$oid":"662c055fcbf0d 16226117b80"} json - week6.0 - Visual ..] g (B | 08 — X
MONGODB query.comparision:{"$oid":"662c055fcbf0d16226117b80"}json X query.comparision:{"$oid":"662c055fcbf0d16226117b8 [> m -
2
 CONNECTIONS query.comparision:{"$oid":"662c055fcbf0d 16226117b80"}.json > ...
v @ localhost:27017... 1
> & admin - "_id": {
> & anw2 z ; $oid": "662c055fcbf0d16226117b80
L > & anu3 74 i
5 p_name": "pen",
> & anu4
> & anus PROBLEMS (1) OUTPUT DEBUG CONSOLE TERMINAL B mongosh +~ [M @ ~ X
> & config
S5 8 local p_name: 'pencilbox’,
rice: 500
v & query } P
> W bbb]
v B comparision query> db.books.find ({ $or: [{ p_name: "book" }, { price: 500 }] })
0 v @ Documents 4 [(
"662c055fcbf0... _id: ObjectId('662c059cchfod16226117b83"),
"662c055fcbfO0... p_name: 'book',
"662C055fcbf0... price: 50
| "662c055fchf0... %’
> B Schema _id: ObjectId('662c@59cchfed16226117b85"),
> B Indexes p_name: 'pencilbox',
price: 500
}
> PLAYGROUNDS]
Bl > HELP AND FEEDBACK query> I

Pauwr ® ®1A0 Ln1,Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2

= 7 " - assu o s 01:41
EE O Type heretosearch \X\L H @ = m @ O B ¢« W 2 31°C Partlydoudy A & & z@dx NG o0 B

3.Array Operator

Name Description
$all Matches arrays that contain all elements specified in the query.
$elemMat Selects documents if element in the array field matches all the specifi
ch $elemMatch conditio
$size Selects documents if the array field is a specified size.

$all

Page 147

t

https://www.mongodb.com/docs/manual/reference/operator/query/all/#mongodb-query-op.-all
https://www.mongodb.com/docs/manual/reference/operator/query/elemMatch/#mongodb-query-op.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/query/elemMatch/#mongodb-query-op.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/query/elemMatch/#mongodb-query-op.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/query/size/#mongodb-query-op.-size

It chooses the document where the value of a field is an array that contains all the specified elements.

Syntax:

Page 148

{ <field>: { $all: [<value1>, <value2> ...]}}

Example:

db.books.find({ tags: { $all: ["Java", "MongoDB", "RDBMS" 1} })

% File Edit Selection View Go Run Terminal Help query.books{"$oid""662c059cchf0d16226117b83"}json - week6.0 - Visual Stu... [G (B 08 — X
MONGODB query.books:{"$0id":"662c059cchbf0d16226117b83"}json X query.books:{"$oid":"662c059cchf0d16226117b84"} json > m -
3
v CONNECTIONS query.books:{"$oid":"662c059ccbf0d16226117b83"}json > []tags
v 0 localhost:27017... = ~d t
. 3 "$oid": "662c059ccbf0d16226117b83"
> & admin
4 }s
> & anu2 5 "p_name": "book",
K+ - >
> & anu3 6 *price®;: 50, —
> & anu4 7 *product”: 70,
> & anus 8 "bio":"hello",
> & config 9 quantity":3e,
10 "tags":["Java","MongoDB", "RDBMS"]
> & local
1. 3
v & query
> m bbb PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL +v ~ X
v @ books powershell
0 > @ Documents 5 c[|uer‘y> db.books.find({ tags: { $all: ["Java", "MongoDB", "RDBMS"] } }) (3] mongosh
> B Schema {
> [Indexes _id: ObjectId('662c059ccbf0d16226117b83"),
> B comparision p_name: 'book’,
price: 50,
product: 70,
bio: 'hello’,
quantity: 30,
tags: ['Java', 'MongoDB', 'RDBMS']
}
> PLAYGROUNDS]
Bl > HELP AND FEEDBACK query> I
Panw* ® ®O0AO Ln10,Col 36 Spaces:2 UTF-8 LF {} JSON @ Golive & [2
88 O Type hereto search 73 =f) e - : G @ @ ’q o) !_ 2 31°C Partlydoudy ~ & T @ m dx ENG 29_%(:_522024 %x}
$elemMatch

The operator relates documents that contain an array field with at least one element that matches
with all thegiven query criteria.

Syntax:
{ <field>: { $elemMatch: { <query1>, <query2>, ...} }}

Example of Using $elemMatch Operator

Let’s first make some updates in our demo collection. Here we will Insert some data into
thecount_no database

Query:

db.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green","Blue"] });
Output:

Page 149

Data_base> db.count_no.insertOne({

acknowledged: true

insertedId: ObjectId("6589856d5U3f99beldle7a5ab")

name:
name:
name:
name:

name:
Age: 24
Likes: 2
Colors:

Inserting the array of elements

Now, using the $elemMatch operator in MongoDB let's match the Red colors from a set
ofColors.

Query:

db.count_no.find({"Colors": {$elemMatch: {$eq: "Red" } } },{_id: 0 });

Data_base> db.count_no.find({ :{$elemMatch: {$eq:

[

{

Using the elemMatch
Operator.

Explanation: The $elemMatch operator is used with the field Colors which is of type
array. In the above query, it returns the documents that have the field Colors and if any
of the values in theColors field has “Red” in it.

Example:

. |db.books.find({ price: { $elemMatch: { $gte: 500, $It: 400} }})
$size

It selects any array with the number of the element specified by the argument.

Page 150

Syntax:

. | db.collection.find({ field: { $size: 2} });

Page 151

2. db.count_no.find({"Colors": {$size: 3} },{ id: 0});

Data_base> db.count_no.find({ :{$elemMatch: {$eq:

[

name :
Age: 24,

Likes: 2,
Colors: [

B Command Prompt - mongo - b
{.db.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes"™ : 2,"Colors":["Red","Green"
"acknowledged" : true,e" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green"
"insertedId" : ObjectId("662ea655b3cd6adbed84e5e3")es" : 2,"Colors":["Red","Green","
.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green","
.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green"
.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green",
.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes"™ : 2,"Colors":["Red","Green",
.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green"
.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green

.count_no.insertOne({"name" : "Harsha", "Age": 24,"Likes" : 2,"Colors":["Red","Green","Blue"]

ANS VOV VOV VOV VYV S

"acknowledged" : true,
"insertedId" : ObjectId("662ea65cb3cd6adbed84e5e4™)

db.count_no.find({"Colors": {$elemMatch: {$eq: "Red" } } },{_id: @ });

"name" "Harsha", "Age" 24, "Likes" : 2, "Colors"™ : ["Red", "Green", "Blue"] }
"name" : "Harsha", "Age" : 24, "Likes" : 2, "Colors" : ["Red", "Green", "Blue"] }
db.count_no.find({"Colors": {$size: 3 } },{_id: @ });

“name" "Harsha", "Age" : 24, "Likes" : 2, "Colors" : ["Red", "Green", "Blue"
"name" : "Harsha", "Age" : 24, "Likes" : 2, "Colors" : ["Red", "Green", "Blue"
|

1| 3
1|

= o =N 0 ... L 01:12
88 O Type here to search) g € -~ | G @ (| @ 31°C Partlycloudy A & T @ ® dx NG 29-04-2024 %

4.MongoDB Evaluation Operator

The evaluation operators in the MongoDB are used to return the documents based on the
result ofthe given expression.
Some of the evaluation operators present in the MongoDB are:

Page 152

Evaluati

on Description
Operato
r

The $mod operator in MongoDB performs a modulo

$mo operation on the value of a field and selects
d documents where the modulo equalsa specified
operat value. It only works with numerical fields.
or

The $expr operator in MongoDB allows aggregation
$exp expressions tobe used as query conditions. It returns
r documents that satisfy the conditions of the query.
operat
or

The $where operator in MongoDB uses JavaScript
expression or function to perform queries. It

$whe evaluates the function for every document in the
re database and returns the documents that match the
operat condition.
or
Evaluation
Name Description
$expr Allows use of aggregation expressions within the query
language.
$jsonSche Validate documents against the given JSON Schema.
ma
$mod Performs a modulo operation on the value of a field and

selects documentswith a specified result.

$regex Selects documents where values match a specified regular
expression.

$text Performs text search.

$where Matches documents that satisfy a JavaScript expression.

Syntax

{ field: {

$mod: [

divisor,
remainder]

I

{
$expr:

{
<aggregatio
n
expression>

>}

{ $where:
<JavaScript
expression

Page 153

https://www.mongodb.com/docs/manual/reference/operator/query/expr/#mongodb-query-op.-expr
https://www.mongodb.com/docs/manual/reference/operator/query/jsonSchema/#mongodb-query-op.-jsonSchema
https://www.mongodb.com/docs/manual/reference/operator/query/jsonSchema/#mongodb-query-op.-jsonSchema
https://www.mongodb.com/docs/manual/reference/operator/query/mod/#mongodb-query-op.-mod
https://www.mongodb.com/docs/manual/reference/operator/query/regex/#mongodb-query-op.-regex
https://www.mongodb.com/docs/manual/reference/operator/query/text/#mongodb-query-op.-text
https://www.mongodb.com/docs/manual/reference/operator/query/where/#mongodb-query-op.-where

$expr

The expr operator allows the use of aggregation expressions within the query language.

Syntax:

. |{ $expr: { <expression>}}

Example:

. |db.store.find({ $expr: {$gt: ["$product" , "$price"]} })

Page 154

% File Edit Selection View Go Run Terminal Help querybooks{"$oid":"662c059ccbf0d16226117b83"}json - week6.0 - Visual Stu..] G (B 08 — X

MONGODB {} query.books:{"$0id":"662c059ccbf0d16226117b83"},json X query.books:{"$oid":"662c059cchbf0d 16226117b84"}.json > M -
: v CONNECTIONS } query.books:{"$oid":"662c059cchf0d 16226117b83"}json > 3 product
v @ localhost:27017... 1 {
> & admin 2 "_id": {
S @ anu2 Z } "$oid": "662c059ccbf0d16226117b83"
— O EE 5 ";)_name": "book",
> 8 anud 6 "price": 50,
> & anu5 7 "product": 70
> & config 8 }
> & local
v & query
> = bbb PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL +v ~ X
v @ books 3] powershell
0 ol Bl query> db.books.find({ $expr: {$gt: ["$product"” , "$price"] } }) B mongesh
"662c059cchbf...
"662c059ccbf... query> db.books.find({ $expr: {$gt: ["$product" , "$price"] } })
"662059ccbf... [
FOBee0RAcCR { _id: ObjectId(662c059cchfod16226117b83"),
> B Schema p_name: 'book',
> B Indexes price: 58,
> m comparision product: 70
> PLAYGROUNDS] }
Bl > HELP AND FEEDBACK query> I
¥ an* @ Ln7,Col 15 Spaces:2 UTF-8 LF {} JSON @ Golive & [
28 O Type here to search Q =t e = a G @ @ ‘ ./ Result A & G 7 ®m dx ENG zs-ﬁ-gzznu %)
$jsonSchema

It matches the documents that satisfy the specified JSON
Schema.db.createCollection("students12" {

validator:{

$jsonSchema: {
required: ["name", "major", "gpa",
"address"],properties: {
name: {
bsonType: "string",
description: "must be a string and is required"
3
address: {

bsonType: "object",

required: ["zipcode"

Page 155

],properties: {

Page 156

"street": { bsonType: "string" },

"zipcode": { bsonType: "string" }

}

)
1

Student:

{

name:‘anush
a,
major:'aaa’,
gpa:'20',
address:{
zipcode:'25
5!

}

}Syntax:

. |{ $jsonSchema: <JSON schema object> }

Page 157

Select Command Prompt - mongo
}
139
uncaught exception: SyntaxError: expected property name, got "{°
(shell):3:0
> db.createCollection("students12", {
. validator:{

$jsonSchema: {
required: ["name", "major", "gpa", "address"],
properties: {
name: {
bsonType: "string",
description: "must be a string and is required”
s
address: {
bsonType: "object”,
required: ["zipcode"],
properties: {
"street": { bsonType: "string" },
"zipcode": { bsonType: "string" }

e D)
{ "ok™ : 1}
> db.books.insertOne({{})
name:anusha,
. major:'aaa’
. gpa:'20'
address:{

8 O Type hereto search & = i 0 31°C partlydoudy A~ & & 7 W dx e 0T B
Select Command Prompt - mongo —
> db.books.insertOne({
... name:anusha,
.. major:'aaa’',
. gpa:'20",
address:{
zipcode: '255"

)
b))

uncaught exception: ReferenceError: anusha is not defined :
(shell):2:1
> db.books.insertOne({
... name: 'anusha’,
.. major:'aaa’',
. gpa:'20",
address: {
zipcode: '255

)
B

"acknowledged" : true,
"insertedId" : ObjectId("662e9ff@b3cd6adbed84e5e2")

= 5 = e i % e _ 0045
O Type here to search 9 31c Partly cloudy \ & D %z ®dx ENG SR El‘

$mod

The mod operator selects the document where the value of a field is divided by a divisor has the
specifiedremainder.

Syntax:

{ field: { $mod: [divisor, remainder] } }

Page 158

Example:

Page 159

db.books.find ({ quantity: { $mod: [3, 0]} })

% File Edit Selection View Go Run Terminal Help querybooks{"$oid":"662c059ccbf0d16226117b83"}json - week6.0 - Visual Stu..] G (B 08 — X
MONGODB {} query.books:{"$oid":"662c059ccbf0d16226117b83"}json X query.books:{"$0id":"662c059ccbf0d16226117b84"}.json > M -
3
v CONNECTIONS } query.books:{"$0id":"662c059cchf0d16226117b83"}json > F quantity
v 0 localhost:27017... > 1 F
S ot 2 = qd™s
& ‘odimin 3 "$0id": "662c@59ccbfOd16226117b83"
> & anu2 4 s
1K+
> & anu3 5 "p_name": "book", —
> & anu4 6 "price": 50,
> & anus 7 "product": 7o,
> @ config S; bio":"hello",
"quantity":30
> & local 4 Y
10 }
v & query
> =m bbb PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL ++v A X
v B books 3] powershell
]
N Documents 4 mongosh
0 . query> db.books.find ({ quantity: { $mod: [3, @] } }) bl <
"662c059cchbf... [
"662c059ccbf... {
"662C059¢chf... _id: ObjectId('662c@59cchfod16226117b83"),
: 'book’
"662c059ccbf... P
! price: 50,
> B Schema product: 70,
> R Indexes bio: 'hello',
> W comparision } quantityz 50
> PLAYGROUNDS]
B > HELP AND FEEDBACK query> I

Panw* ® ®O0AO Ln9,Col 16 Spaces:2 UTF-8 LF {} JSON @ Golive & [

28 O Type here to search

/Q Hi e n G @ 3] ’0 2 32°C Mostlycear A & & 2 W dx &G zs-ﬁ-szzoM B

$regex

It provides regular expression abilities for pattern matching strings in queries. The MongoDB uses
regularexpressions that are compatible with Perl.

Syntax:

{ <field>: /pattern/<options> }
Example:

db.books.find({ p_name: { $regex: /b/ } })

Page 160

N oo s W

1-9 anu*

@® ®0A0

28 O Type here to search

Ln7 Col 15 Spaces:2 UTF-8 LF {} JSON

s

/\\,

~a) ‘9 32°C Mostly clear & 7z

$text

The $text operator searches a text on the content of the field, indexed with a text index.

db.books.createlndex({bio:"text"})

Syntax:

$text:
{
$search: <string>,
$language: <string>,
$caseSensitive: <boolean>,
$diacriticSensitive:

polean>8. }

}

Example:

db.books.find({ $text: { $search: "hello" } })

% File Edit Selection View Go Run Terminal Help query.books{"$oid""662c059cchf0d16226117b83"}json - week6.0 - Visual Stu..] & (B 08 — X
MONGODB query.books:{"$oid":"662c059cchbf0d16226117b83"}json X query.books:{"$oid":"662c059cchf0d16226117b84"}.json > @ -
: v CONNECTIONS } query.books:{"$oid":"662c059ccbfod16226117b83"}json > H product
v 0 localhost:27017... 1 {
> & admin 2 "_id": {
S & anuz i "$oid": "662c059ccbf0d16226117b83"
- S 5 ;t;_rlame": "book",
> 8 anud 6 "price": 50,
> & anu5 7 "product": 70
> & config 8 }
> & local
v & query
> m bbb PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL +v ~ X
v @ books powershell
0 v ® Documents 4 query> db.books.find({ p_name: { $regex: /b/ } }) [mongosh
"662c059cchbf... [{
"662c059cchbf... _id: ObjectId('662c059ccbf0d16226117b83"),
"662c059ccbf... p_name: ‘book®,
"662C059CCbf... 2:;;3;59;9
> BB Schema T
> R Indexes {
S B ompansion _id: ObjectId('662c@59cchfed16226117b85"),
p_name: 'pencilbox’,
> PLAYGROUNDS price: 500
L > HELP AND FEEDBACK },

@ Golive & (2

2337
X ENG o 042004 %?

Page 161

] File Edit Selection

MONGODB

v CONNECTIONS
v 0 localhost:27017...
admin
anu2
anu3
anu4
anu5

config

local
query
> bbb
Vv & books
0 v @@ Documents 4
"662c059cchbf...
"662c059ccbf...
"662c059cchbf...
"662c059ccbf...
> BB Schema
> R Indexes
> @ comparision

NN AN

(]

> PLAYGROUNDS
> HELP AND FEEDBACK
@® ®0A0

View Go Run

Terminal Help query.books:{"$oid":"662c059ccbf0d16226117b83"}.json - week6.0 - Visual Stu...] d (B 08 — X

query.books:{"$oid":"662c059cchbf0d16226117b83"}.json X } query.books:{"$0id":"662c059cchbf0d 16226117b84"}.json > @

} query.books:{"$0id":"662c059ccbf0d16226117b83"}json > bio

1 {
2 » 3d™: {
3 "$oid": "662c059ccbf0d16226117b83"
4 }J —
5 "p_name": "book",
6 "price": 50,
7 "product": 70,
8 "bio":"hello"
Si B
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL +v A X
[>] powershell

query> db.books.find({ $text: { $search: "he" } }) [mongosh
query> db.books.find({ $text: { $search: "hello" } })
I
{
_id: ObjectId('662c@59ccbf0d16226117b83"),
p_name: 'book',
price: 50,
product: 70,
bio: 'hello'
}
]
query> db.books.createlndex({bio:“text"})l

LF {} JSON @ Golive & [2

1-9 anu*

28 O Type here to search

$where

Ln 8, Col 16 Spaces:2 UTF-8

Q o0 = 2349 .
& 32°C Mostlyclear A & & 7z W dx ENG .\ 00 %j

The "where" operator is used for passing either a string containing a JavaScript expression or a full
JavaScriptfunction to the query system.

Example:

db.books.find({$where:function(){return (obj.p_name=="book")}})

% File Edit Selection

MONGODB

v CONNECTIONS

v 0 localhost:27017...
admin
anu2
% anu3
anu4
anu5

config

local
query
> W bbb
v & books
0 v @@ Documents 4
"662c059ccbf...
"662c059cchbf...
"662c059ccbf...
"662c059ccbf...
> BB Schema
> R Indexes
> @ comparision

SO AN N

> PLAYGROUNDS
> HELP AND FEEDBACK
@® ®0A0

¥° anu*

View Go Run

Terminal Help query.books:("$oid":"662c059ccbf0d16226117b83"} json - week6.0 - Visual Stu...] d (B 02 — X

query.books:{"$oid":"662c059ccbf0d16226117b83"}json X } query.books:{"$0id":"662c059ccbf0d 16226117b84"}.json > @

} query.books:{"$oid":"662c059cchbf0d 16226117b83"}json > H quantity

1 T
2 ® g™ {
3 "$oid": "662c059ccbf0d16226117b83"
4 s
5 "p_name": "book", —
6 *price™:: 50,
7 "product": 70,
8 "bio":"hello",
9 "quantity":30
10 }
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL +v A X
[>] powershell

- ; . mongosh
query> db.books.find({$where:function(){return (obj.p_name=="book")}})

I
{
_id: ObjectId('662c@59ccbf@d16226117b83"),
p_name: 'book',
price: 50,
product: 70,
bio: 'hello’,
quantity: 30
}
]
query> I

Ln9,Col 16 Spaces:2 UTF-8 LF {} JSON @ Golive & [2

2" O Type here to search

" . — 00:13
AT Recordhigh ~ & G 7 W dx ENG o %7

Page 162

5. Element Operators

The element operators in the MongoDB return the documents in the collection which
returns trueif the keys match the fields and datatypes.
There are mainly two Element operators in MongoDB:

Eleme
nt Description Syntax
Operat
or
$exis Checks if a specified field exists in the {fLetl)i:c)l{ejne:iitS:
ts documents.)
Verifies the data type of a specified field { field: { $type: <BSON
$typ in thedocuments. type>
e >

MongoDB Element Operator

$exists

The exists operator matches the documents that contain the field when Boolean is true. It also
matches thedocument where the field value is null.

Syntax:

. |{ field: { $exists: <boolean>}}

Example:

db.books.find ({ price: { $exists: true, $nin: [50, 5001} })

Page 163

’a File Edit Selection View Go Run Terminal query.comparision:{"$oid":"662c055fchf0d 16226117b80"} json - week6.0 - Visual ..] & (B | 08 — X

MONGODB {1 query.comparision:{"$0id":"662c055fcbf0d16226117b80"}json X {} query.comparision:{"$oid":"662c055fcbfod16226117b8 [> [0 -
2
\ CONNECTIONS {} query.comparision:{"$oid":"662c055fcbf0d16226117b80"}json > ...
v 0 localhost:27017... 1 { -
> & admin 2 "_id": o
5 3 "$0id": "662c055fcbf0d16226117b80"
€ anu2 P }
LS > & anu3 o e W
5 p_name": "pen",
> & anu4
S @ lanus PROBLEMS ({1 OUTPUT ~ DEBUG CONSOLE TERMINAL Bl mongosh +~ [@ ~ X
> & config
> 8 local p_name: 'pencilbox',
= price: 500
v & query }
> bbb
v B comparision query> db.books.find ({ price: { $exists: true, $nin: [50, 500] } })
0 v @@ Documents 4 [‘
"662055fcbf0... _id: ObjectId('662c059ccbfod16226117b84"),
‘ "662c055fcbfO0... p_name: ‘'pen’,
"662c055fchf0... price: 100
| "662c055fchf0... %’
> B Schema _id: ObjectId('662c859ccbfed16226117b86"),
> R Indexes p_name: 'ball’,
price: 200
}
> PLAYGROUNDS]
B > HELP AND FEEDBACK query> I
Panur @ Ln1,Col 1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2
28 O Type here to search & =f) e " a G @ ﬂ w3 D | (Q 31°C Partlycloudy A & T 7z ® dx ENG 27_%:f024 %
$type

The type operator chooses documents where the value of the field is an instance of the specified BSON
type.

Type Number Alias Notes
Double 1 “double”
String 2 “string”
Object 3 “object”
Array 4 “array”
Binary Data 5 “binData”
Undefined 6 “undefined” Deprecated
Objectid 7 “objectld”
Boolean 8 “bool”
Date 9 “date”
Null 10 “null”
Regular Expression 11 “regex”
DBPointer 12 “dbPointer” Deprecated
JavaScript 13 “javascript”
Symbol 14 “symbol” Deprecated
Javascript (with scope) 15 “javascriptWithScope”
32-bit integer 16 “int”
Timestamp 17 “timestamp”
64-bit Integer 18 “long”
Decimal128 19 “decimal New in Version 3.4
Min Key -1 “minKey”
Max Key 127 “maxKey”
Syntax:

Page 164

. |{ field: { $type: <BSON type> }}

Example:

Page 165

db.books.find ({ "bookid" : { $type : 21} });

% File Edit Selection View Go Run Terminal

MONGODB

 CONNECTIONS
v 0 localhost:27017...
admin
anu2
anu3

anu4

anu5
config
local
query
> W@ bbb
Vv & comparision
o v @ Documents 4
"662c055fcbf0..
"662c055fcbf0...
"662c055fcbf0...
| "662c055fcbfO...
> BB Schema
> B Indexes

SO AN A R N

> PLAYGROUNDS
> HELP AND FEEDBACK
Paur ® ®1A0

query.comparision:{"$oid":"662c055fcbf0d16226117b80"}json X

query.comparision:{"$oid":"662c055fcbf0d16226117b80"}.json > ...

1 {
2 = dd": {
3 "$oid": "662c@55fcbf0d16226117b80"

PROBLEMS (1 OUTPUT DEBUG CONSOLE TERMINAL

query> db.books.find ({ "price" : { $type : 16 } });
[
{
_id: ObjectId('662c@59ccbf0d16226117b83"),
p_name: 'book"',
price: 50
s
{
_id: ObjectId('662c059ccbf@d16226117b84"),
p_name: ‘'pen’,
price: 100
}s
{
_id: ObjectId('662c059ccbf0d16226117b85"),
p_name: 'pencilbox’,
price: 500

_id: ObjectId('662c059ccbfod16226117b86"),
p_name: 'ball’,

query.comparision:{"$oid":"662c055fcbf0d 16226117b80"} json - week6.0 - Visual .. [] & (B | 08 — X

query.comparision:{"$oid":"662c055fcbf0d16226117b8 [> m --

B mongosh +~ M @ ~ X

2m O Type here to search N =l e i ﬁ i @ iE_ (] i

Ln1,Col1 Spaces:2 UTF-8 LF {} JSON @ Golive & (2

6. Bitwise Operators

02:00

300 e :
<2 31°C Partlycloudy A & & «~Z ® dx ENG S %)

The Bitwise operators in the MongoDB return the documents in the MongoDB mainly on
the fields that have numeric values based on their bits similar to other programming

languages.
Bitwis
e

Operat
or

$bitsAllClea
r

$bitsAllSet

$bitsAnySe
t

Descripti
on

Returns documents where all bits in the
specifiedfield are 0.

Returns documents where all bits in the
specifiedfield are 1.

Returns documents where at least
one bit in thespecified field
is set (1).

Syntax

{ field: {
$bitsAllClear:
<bitmask> } }

{ field: {
$bitsAllSet:
<bitmask> } }

{ field: {
$bitsAnySet:
<bitmask> } }

Page 166

$bitsAnyCle
ar

In the below example, we also specified the positions we wanted.

Returns documents where at least
one bit in thespecified field is
clear (0).

{ field: {
$bitsAnyClear:
<bitmask> } }

Page 167

Example of Using $bitsAllSet Operator
Let’s find the Person whose Age has bit 1 from position 0 to 4.
Query:
db.count_no.find({"Age":{$bitsAllSet: [0,4] } },{ id:0 });
Output:

Data_base> db.count_no.find({

[

:{$bitsAllSet:[0,4]}},{_id:0});

{ name:
{ name:
EUTE ,

, Age: 25, Likes: 2
, Age: 23, Likes: 2
Age: 23, Likes: 3

]

Data_base>

SbitsAllSet in MongoDB

Explanation: In the above query, we have used $bitsAllSet and it returns documents whose
bits position from 0 to 4 are only ones. It works only with the numeric values. The numeric

values will be converted into the bits and the bits numbering takes place from the right.

7.

Geospatial Operators

The Geospatial operators in the MongoDB are used mainly with the terms that relate to
the data which mainly focuses on the directions such as latitude or longitudes.
The Geospatial operators in the MongoDB are:

Geospat
ial
Operato
r

$near

$center

$maxDista
nce

Description

Finds geospatial objects near a
point.
Requires a geospatial index.

(For $geoWithin with planar
geometry)Specifies a circle
around a center point

Limits results of $near and
$nearSpherequeries to a
maximum distance from the
point.

Syntax

{ $near: { geometry:
<point_geometry>,
maxDistance: <distance>
(optional) } }

{ $geoWithin: { $center:
[<longitude>,
<latitude>], radius:
<distance> } }

{ $near: { geometry:
<point_geometry>,
maxDistance: <distance> }

by

Page 168

Limits results of $near and
$nearSpherequeries to a
$minDista minimum distance from the
nce point.

{ $near: { geometry:
<point_geometry>,
minDistance: <distance> }

by

Page 169

8. Comment Operators

The $comment operator in MongoDB is used to write the comments along with the query in
MongoDB which is used to easily understand the data.

Comment Operator Example

Let's apply some comments in the queries using the $comment Operator.

Query:
db.collection_name.find({ $comment : comment })
Output:

Data_base> db.count_no.find({$comment:
name: : Likes: 1
name: , Age: 25, Likes: 2 }
name: Age: 23, Likes: 2 },

!
name: : 23, Likes: 3 1},

b

1

1

{
{
{
{
{

name:
Age:

$Comment operator in
MongoDB

Explanation: In the above query we used the $comment operator to mention the comment.
We have used “This is a comment” with Scomment to specify the comment. The comment
operator in the MongoDB is used to represent the comment and it increases the
understandibility of thecode.

Page 170

the

MongoDB Projection

MongoDB provides a special feature that is known as Projection. It allows you to select
only thenecessary data rather than selecting whole data from the document. For example,
a document contains 5 fields, i.e.,

{

name:
"Roma",age:

30, branch:

EEE,

department: "HR",
salary: 20000

But we only want to display the name and the age of the employee rather than displaying
whole

details. Now, here we use projection to display the name and age of the employee.

One can use projection with db.collection.find() method. In this method, the second
parameter is theprojection parameter, which is used to specify which fields are returned
in the matching documents.

Syntax:
db.collection.find({}, {field1: value2, field2: value2, ..})

. If the value of the field is set to 1 or true, then it means the field will include in the
returndocument.

. If the value of the field is set to 0 or false, then it means the field will not include in the
returndocument.

« You are allowed to use projection operators.

« There is no need to set _id field to 1 to return _id field, the find() method always return
_id unlessyou set a _id field to O.

Examples:
In the following examples, we are working with:

Database: GeeksforGeeks
Collection: employee
Document: five documents that contain the details of the employees in the form of field-value pairs.

171

® 00 anki — mongo — 80x55

> use GeeksforGeeks
switched to db GeeksforGeeks
> db.employee.find().pretty()
{
" id" : ObjectId("5e49177592e6dfa3fc48dd73"),
"name" : "Sonu",
"age" : 26,
"branch" : "CSE",
"department" : "HR",
"salary" : 44000,
"joiningYear" : 2018

"_id" : ObjectId("5e539e0492e6dfa3fc4s8ddaa"),
"name" : "Amu",

"age" : 24,

"branch" : "ECE",

"department" : "HR",

"joiningYear" : 2017,

"salary" : 25000

"_id" : ObjectId("5e539e0492eé6dfa3fc48ddab"),
"name" : "Priya",

"age" : 24,

"branch" : "CSE",

"department" : "Development",

"joiningYear" : 2017,

"salary" : 30000

"_id" : ObjectId("5e539e0492eé6dfa3fc48ddac"),
"name" : "Mohit",

"age" : 26,

"branch" : "CSE",

"department" : "Development",

"joiningYear" : 2018,

"salary" : 30000

"_id" : ObjectId("5e539e0492eé6dfa3fc48ddad"),
"name" : "Sumit",

"age" : 26,

"branch™ : “ECE",

"department" : "HR",

"joiningYear" : 2019,

"salary" : 25000

Page 172

Displaying the names of the employees —

anki — mongo — 80x55

> db.employee.find({}, {name: 1}).pretty()

[1du
_ dn
"_id"
u_idn
i

V A A A

: ObjectId("5e49177592e6dfa3fc48dd73"), "name"
: ObjectId("5e539e0492e6dfa3fc48ddaa"), "name" :
: ObjectId("5e539e0492e6dfa3fc48ddab"), "name" :
: ObjectId("5e539e0492e6dfa3fc48ddac"), "name" :
: ObjectId("5e539e0492e6dfa3fc48ddad"), "name" :

: "Sonu" }

"Amu" }

upriyan }
"Mohit" }
"Sumit" }

Displaying the names of the employees without the ia field —

[NON | anki — mongo — 80x55

> db.employee.find({}, {name: 1, _id: 0}).pretty()

{ llnamell . |Isonul| }

{ "name" : "Amu" }

{ "name" : "Priya" }

{ "name" : "Mohit" }

{ "name" : "Sumit" }

d |
Displaying the name and the department of the employees
without the _:a«field

| NON) anki — mongo — 80x55

> db.employee.find({}, {name: 1, _id: @, department: 1}).pretty()

{ "name" : "Sonu", "department" : "HR" }

{ "name" : "Amu", "department" : "HR" }

{ "name" : "Priya", "department" : "Development" }

{ "name" : "Mohit", "department" : "Development" }

{ "name" : "Sumit", "department" : "HR" }

> 1

Page 173

Displaying the names and the department of the employees whose joining year

Is 2018 —

 JON " anki — mongo — 80x55

> db.employee.find({joiningYear: 2018}, {name: 1,department: 1, _id: 0}).pretty(!

)
{ "name" : "Sonu", "department" : "HR" }
{ "name" : "Mohit", "department" : "Development" }

> |

Projection Operators

Name Description

s Projects the first element in an array that matches the query condition.

selemMatch Projects the first element in an array that matches the specified $elemMatch condition.

Smeta Projects the document's score assigned during the stext operation.

NOTE

stext provides text query capabilities for self-managed (non-Atlas) deployments. For @

hosted on MongoDB Atlas, MongoDB offers an improved full-text query solution, Atlas

Search.

$slice Limits the number of elements projected from an array. Supports skip and limit slices.

MongoDB Projection Operator

Page 174

ata

https://www.mongodb.com/docs/manual/reference/operator/projection/positional/#mongodb-projection-proj.-
https://www.mongodb.com/docs/manual/reference/operator/projection/elemMatch/#mongodb-projection-proj.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/projection/elemMatch/#mongodb-projection-proj.-elemMatch
https://www.mongodb.com/docs/manual/reference/operator/aggregation/meta/#mongodb-expression-exp.-meta
https://www.mongodb.com/docs/atlas/atlas-search/
https://www.mongodb.com/docs/atlas/atlas-search/
https://www.mongodb.com/docs/manual/reference/operator/projection/slice/#mongodb-projection-proj.-slice

The $ operator limits the contents of an array from the query results to contain only the first element
matching the query document.

Page 175

M w o=

Syntax:

ib.books.find({ <array>: <value> ...},
{"<array>.$":11})

ib.books.find({ <array.field>: <value> ..},

{"<array>.$":1})

$elemMatch

The content of the array field made limited using this operator from the query result to contain only
the first element matching the element $elemMatch condition.

Syntax:

db.library.find({ bookcode: "63109" },
{ students: { $elemMatch: { roll: 102} }})

Page 176

Page 177

$meta

The meta operator returns the result for each matching document where the metadata associated with
the query.

Syntax:
. |{ $meta: <metaDataKeyword> }

Example:

db.books.find(
<query>,
{ score: { $meta: "textScore" } }
$slice

It controls the number of values in an array that a query returns.

Syntax:

. |[db.books.find({ field: value }, { array: {$slice: count } });

Example:

Page 178

4. Aggregation Pipeline
a. What is Aggregation in MongoDB?

Aggregation is a way of processing a large number of documents in a collection by means of passing
them through different stages. The stages make up what is known as a pipeline. The stagesin a
pipeline can filter, sort,group, reshape and modify documents that pass through the pipeline.

One of the most common use cases of Aggregation is to calculate aggregate values for groups of
documents. Thisis similar to the basic aggregation available in SQL with the GROUP BY clause and
COUNT, SUM and AVG functions. MongoDB Aggregation goes further though and can also perform
relational-like joins, reshape documents, create new and update existing collections, and so on.

There are what are called single purpose methods like estimatedDocumentCount(), count(), and
distinct() whichare appended to a find() query making them quick to use but limited in scope.

« [Each stage of the pipeline transforms the documents as they pass through it and allowing for
operationslike filtering, grouping, sorting, reshaping and performing calculations on the data.

b. MongoDB aggregate pipeline syntax
This is an example of how to build an aggregation query:
db . collectionName. aggregate (pipeline, options),

where collectionName-is the name of a collection,
pipeline-is an array that contains the aggregation stages,
options - optional parameters for the

aggregation This is an example of the
pipeline =
{$match: {..}},
{$group:{..}},
{$sort:{..}}

]

aggregation pipeline syntax:

C. Smgle-purpose aggregatlon

o Itis used when we need simple access to document like counting the number of documents or
for findingall distinct values in a document.

« It simply provides the access to the common aggregation process using

Page 179

the count(), distinct() and estimatedDocumentCount() methods so due to which it lacks the
flexibilityand capabilities of the pipeline.

Example of Single-purpose aggregation
Let’s consider a single-purpose aggregation example where we find the total number of users in each
city fromthe users collection.

Page 180

https://www.geeksforgeeks.org/mongodb-count-method-db-collection-count/

To

db.users.aggregate([

{ $group: { _id: "$city", totalUsers: { $sum: 1}}}
1)
Output:
[

{ _id: 'Los Angeles', totalUsers: 1 },

{ _id: 'New York', totalUsers: 1},

{ _id: 'Chicago’, totalUsers: 1}

]
In this example, the aggregation pipeline first groups the documents by the city field and
then usesthe ssum accumulator to count the number of documents (users) in each city.

The result will be a list of documents, each containing the city (_id) and the total number of users
(totalusers)in that city.

d. How to use MongoDB to

Aggregate Data?
use MongoDB for aggregating data, follow below steps:
1. Connect to MongoDB: Ensure you are connected to your MongoDB instance.
2. Choose the Collection: Select the collection you want to perform aggregation on, such as students
3. Define the Aggregation Pipeline: Create an array of stages, like $group to group documents and
performoperations (e.g., calculate the average grade).
4. Run the Aggregation Pipeline: Use the aggregate method on the collection with your defined pipel

Example:
db.students.aggregate(][
{
$group: {
_id: null,
averageGrade: { $avg: "$grade" }
}
}
)

This calculates the average grade of all students in the students collection.

e. Mongodb Aggregation Pipeline

MongoDB Aggregation Framework

$match output

mongoDB

« Mongodb Aggregation Pipeline consist of stages and each stage transforms the document. It is
a multi-stage pipeline and in each state and the documents are taken as input to produce the
resultant set of documents.

Page 181

ine.

In the next stage (ID available) the resultant documents are taken as input to produce output,

this processcontinues till the last stage.
The basic pipeline stages are defined below:
1. filters that will operate like queries.

Page 182

2. the document transformation that modifies the resultant document.
3. provide pipeline provides tools for grouping and sorting documents.

« Aggregation pipeline can also be used in sharded collection.

Example:

db.train.aggregate([
{$match:{class:"first-class"}}, " a
{$group:{_id:"id",total:{$sum:"$fare"}}} plpellne stages

1)
{
id:"181",
class:"first-class",
fare: 1200
) {
{ - ks > id:"181",
1?: 18} ;) " class:"first-class"”,
class:"first-class”, Fare: 1200
fare: 1000 } {
} ¢ _id:"181",
{ - " id:"181", total: 2200
id:"181", class:"first-class”, }
class:"second-class", fare: 1000 {
fare: 1000 id:"167",
X Smatch % $group total: 1200
« id:"167", }
id: 162 ,) class:"first-class"”,
class:"first-class", fare: 1200
fare: 1200 }
{
id:"167",
class:"second-class”,
fare: 15680
Explanation:

In the above example of a collection of “train fares”. $match stage filters the documents by the value
in classfield i.e. class: “first-class” in the first stage and passes the document to the second stage.

In the Second Stage, the $group stage groups the documents by the id field to calculate the sum of
fare for each unique id.

Here, the aggregate() functionis used to perform aggregation. It can have three
operators stages , expression and accumulator. These operators work together to achieve final desired
outcome.

db.train.aggregate([{Sgroup : { _id :"Sid", total : { Ssum : "Sfare" }}}])

o — N
Stage Expression Accumulator

f. Aggregation Pipeline Method
To understand Aggregation Pipeline Method Let’'s imagine a collection named users with some
documents for our examples.

Page 183

https://www.geeksforgeeks.org/mongodb-replication-and-sharding

{
ll_idll:
Objectld("60a3c7e96e06f64fb5ac0700"),
"name": "Alice",

"age": 30,

184

mailto:alice@example.com
mailto:alice@example.com

"city": "New York"

}
{
"id™
Objectld("60a3c7e96e06f64fb5ac0701"),
"name": "Bob",
"age": 35,
"email":
"bob@example.com","city":
"Los Angeles"

ll_idll:

Objectld("60a3c7e96e06f64fb5ac0702"),

"name": "Charlie",

"age": 25,

0. $group: It Groups documents by the city field and calculates the average age
usingthe $avg accumulator.

db.users.aggregate([

{ $group: { _id: "$city", averageAge: { $avg: "$age" } } }
1)
Output:

[
{ _id: 'New York', averageAge: 30 },
{ _id: 'Chicago’, averageAge: 25 },
{ _id: 'Los Angeles', averageAge: 35}
]

1. $project: Include or exclude fields from the output documents.

db.users.aggregate([

{ $project: { name: 1, city: 1, _id: 0} }
1)
Output:

[

{ name: 'Alice’, city: 'New York' },
{ name: 'Bob', city: 'Los Angeles'},
{ name: 'Charlie', city: 'Chicago' }

]

2. $match: Filter documents to pass only those that match the specified condition(s).

db.users.aggregate([
{ $match: { age: { $gt: 30} } }

1)
Output:

185

https://www.geeksforgeeks.org/mongodb-aggregation-group-command/#%3A~%3Atext%3DThe%20%24group%20command%20in%20MongoDB%27s%2Cfunctions%20on%20the%20grouped%20data
mailto:bob@example.com
mailto:bob@example.com
mailto:charlie@example.com
mailto:charlie@example.com

[
{

id:
Objectld('60a3c7e96e06f64fb5ac0701"),
name: 'Bob’,
age: 35,
email:

186

3. $sort: It Order the documents.

db.users.aggregate([
{ $sort: { age: 1}}

1)

Output:

[
{
_id:
Objectld('60a3c7e96e06f64fb5ac0702'),
name: 'Charlie’,
age: 25,
email:
'‘charlie@example.com’,city:
'‘Chicago’
f
{
_id:
Objectld('60a3c7e96e06f64fb5ac0700"),
name: 'Alice’,
age: 30,
email:
‘alice@example.com’,city:
'New York'
1
{
_id:
Objectld('60a3c7e96e06f64fb5ac0701"),
name: 'Bob’,

—— - nr

4. $limit: Limit the number of documents passed to the next stage.

db.users.aggregate([
{ $limit: 2 }

1)

Output:

187

https://www.geeksforgeeks.org/mongodb-sort-method/

[

{
_id:
Objectld('60a3c7e96e06f64fb5ac0700"),
name: 'Alice’,
age: 30,
email:
'alice@example.com’,city:
'New York'

o

{
_id:
Objectld('60a3c7e96e06f64fb5ac0701"),
name: 'Bob’,
age: 35,
email:

188

g.How Fast is MongoDB Aggregation?

The speed of MongoDB aggregation depends on various factors such as the complexity of the
aggregation pipeline, the size of the data set, the hardware specifications of the MongoDB server
and the efficiency of the indexes.

In general, MongoDB’s aggregation framework is designed to efficiently process large

volumes of dataand complex aggregation operations. When used correctly it can provide fast
and scalable aggregation capabilities.

So with any database operation, the performance can vary based on the specific use case and
configuration. It is important to optimize our aggregation queries and use indexes where
appropriate andensure that our MongoDB server is properly configured for optimal

performance.

Page 189

How to Insert a Document into a MongoDB Collection
using Node.js?

MongoDB, a popular NoSQL database, offers flexibility and scalability for handling
data. Ifyou’re developing a Node.js application and need to interact with MongoDB,
one of the fundamental operations you’ll perform is inserting a document into a
collection. This article provides a step-by-step guide on how to accomplish this using
Node.js. .

Prerequisites:
- NPM
« NodeJS

« MongoDB
The steps to insert documents in MongoDB collection are given below

Table of Content

« NodedS and MongoDB Connection
o Create a Collection in MongoDb using Node Js
« Insert a Single Document

Insert Many Document
Handling Insertion Results
Read Documents from the collection

Steps to Setup the Project

Step 1: Create a nodedS application by using this command

npm

initor

npm init -y

« npm init command asks some setup questions that are important for the project

« npm init -y command is used to set all the answers of the setup questions as yes.
Step 2: Install the necessary packages/libraries in your project using the following commang
npm install mongodb

Project Structure:
“ INSERTDOCUMENT

» node_modules

J5 index.s

{} package-lock.json

{} package.json
ReadME.md

Project Structure

The updated dependencies in package.json file will look like:

Page 190

Is.

https://www.geeksforgeeks.org/node-js-npm-node-package-manager/amp/
https://www.geeksforgeeks.org/node-js-npm-node-package-manager/amp/
https://www.geeksforgeeks.org/mongodb-tutorial/
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#nodejs-and-mongodb-connection
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#create-a-collection-in-mongodb-using-node-js
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#insert-a-single-document
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#insert-many-document
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#handling-insertion-results
https://www.geeksforgeeks.org/how-to-insert-a-document-into-a-mongodb-collection-using-nodejs/#read-documents-from-the-collection

"dependencies": {
"mongodb":
""6.6.1"

191

NodeJS and MongoDB Connection

Once the MongoDB is installed we can use MongoDB database with the Nodejs
Project.Initiallywe need to specify the database name ,connection URL and the
const { MongoClient } = require('mongodb’);

/I or as an ecmascript module:

/l import { MongoClient } from 'mongodb'

/I Connection URL

const url =
'mongodb://localhost:27017';const
client = new MongoClient(url);

const dbName = 'project_name'; // Database
Nameasync function main() {

await client.connect();
console.log('‘Connected successfully to server');

const db = client.db(dbName);
const collection = db.collection('collection_name');

//Can Add the CRUD operations
}

main() .then(console.log)
.catch(console.error)

PO || P /A UG | S [A N W

instance of MongoDBClient.

« MongoClient class provided method, to connect MongoDB and Nodejs.

« client is the instance of MongoDb and Node Js connection.

« client.connect() is used to connect to MongoDB database ,it awaits until the the
connection isestablished.

Create a Collection 1n MongoDb using Node
Js

In this operation we create a collection inside a database.Intilally we specify the database

in whichcollections is to be created.
//Sepcify Database
const dbName =

'database_name';const db =

client.db(dbName);

« client is the instance of the connection which provides the db() method to create a new
Database.
« collection() method is used to set the instance of the collection .

Insert a Single Document

192

To insert a document into the collection insertOne() method is used.
const insertDoc = await

collection.insertOne({filed1: value1,

field2: value?2,

);

193

in

/lInsert into collection
console.log('Inserted documents =>', insertDoc);

Insert Many Document
To insert a document into the collection insertMany() method is used.
const doc_array = [
{ document1 },
{ document2 },
{ document3 },

I;

/lInsert into
collectionconst
insertDoc =
await collection.insertMany(doc_array);

Handling Insertion Results

In a project we have different tasks which needs to be executed in specific order.In the
MongoDB and Node Js project we must ensure that connection is set.While performing
insertion of documents

, we perform asynchronous insertion so that execution is not interrupted.We use try-catch
block to handle errors while setting up connection, inserting document or while performing
any other operation. If an error occurs during execution ,catch block handles it or provide the
details about theerror ,which helps to resolve the error.

try {
const dbName =
'database _name';await
client.connect();
const collection = db.collection('collection_name');

const doc_array
=

{ document1 },

{ document?2 },

{ document3 },

I;

/lInsert into collection
const insertDoc = await collection.insertMany(doc_array);

console.log('Inserted documents =>', insertDoc);
} catch (error) {

. Initally connection is established .AS the connection is established insertMany() method

sertOne() method is used to insert the document in the collection.

« insertDoc stores the result of the insertion which is further
logged.

Read Documents from the collection

We can read the documents inside the collection using the find() method.

const doc = await

collection.find({}).toArray();

find() method is used to along with empty {} are used to read all the documents in the
collection.Which are further converted into the array using the toArray() method.

194

or

Closing the Connection

finally{
client.close

0

195

« Once the promise is resolved or rejected , code in finally block is executed. The
close() methodis used to close the connection.

« Connection is closed irrespective of the error .It is generally used to cleanup and
release theresource.

Example: Implementation to show Insertion of documents into a MongoDB

collectionusing Node.js

JavaScript
const { MongoClient } = require("mongodb");

async function main() {
const url = "mongodb://127.0.0.1:27017";
const dbName = "GeeksforGeeks";
const studentsData = [
{rollno: 101, Name: "Raj ", favSub: "Math" },
{rollno: 102, Name: "Yash", favSub: "Science" },
{rollno: 103, Name: "Jay", favSub: "History" },

I

let client = null;

try {
// Connect to MongoDB
client = await MongoClient.connect(url);
console.log("Connected successfully to
MongoDB");

const db = client.db(dbName);
const collection = db.collection("students");

// Add students to the database

await collection.insertMany(studentsData);
console.log("Three students added
successfully");

// Query all students from the database
const students = await
collection.find().toArray();console.log("All
students:", students);
} catch (err) {
console.error("Error:",
err);
} finally {
// Close the connection
if (client) {
client.close(
);
console.log("Connection closed successfully");
}
}
}

main();

Output:

Page 196

Connected successfully to MongoDE
Three studen dded successfully
A11 studemts: [

I
L

_id: mew ObjectId(
rollmo: 181,

hame : J
favsub:

3
Iy
I

L

_id: new ObjectId(
rollno: 182,

Name : r
favsub:

%
FE
I

L

_id: new ObjectId(
rollno: 183,
Name :
favsub:
].
1
Connection closed successfully
Insert Document in
MongoDB

Explanation :

In the above example, Initially MongoClient class is imported which is used to connect
MongoDB and Nodejs .client is the instance of MongoDb and Node Js connection. which
is used to name the database .As database is set ,collection() method sets the instance of
the collection .Three documentsare inserted in the students collection using insertMany()
method .Error during the execution are handled using the try catch block | finally
connection is closed using the close() method

Page 197

Page 198

Page 199

	[R22A0516] LECTURE NOTES
	MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	Vision
	Mission
	PEO1–ANALYTICALSKILLS
	PEO2–TECHNICALSKILLS
	PEO3–SOFTSKILLS
	PEO4–PROFESSIONALETHICS

	PROGRAM OUTCOMES (POs)
	Engineering Graduates should possess the following:

	3. HTML – ELEMENTS
	4. HTML – ATTRIBUTES
	6. HTML – PHRASE TAGS
	7. HTML – META TAGS
	Github
	What is CSS?
	What is JavaScript?
	Wrapping Up
	Examples
	A note about macOS
	HP-UX Unix
	Oracle or Sun Solaris OS
	IBM AIX Unix

	Summing up
	Why Use JSON?
	Storing Data
	JSON Example
	Need of React Router
	React Router Installation
	Components in React Router
	What is Route?
	Adding Navigation using Link component
	Benefits Of React Router
	React Forms
	Creating Form

	1. Getting Started with Angular
	3. Components
	5. Fetch Data from a Service
	7. http module
	9. Routing
	a. Defination:-
	d. Here are some of the features of Angular
	1. Custom Components
	2. Data Binding
	3. Dependency Injection
	4. Testing
	5. Comprehensive
	6. Browser Compatibility

	e. Advantages of Angular
	f. Disadvantages of Angular
	g. Angular Prerequisites

	2. Angular App From Scratch Creating an Angular Application
	Dependencies:
	Creating a Component in Angular 8:
	Using a component in Angular 8:
	gfg.component.html:
	gfg.component.css:

	4. Properties, Events & Binding with ngModel
	Data Binding
	One-way databinding
	Two-way databinding

	1.String Interpolation
	2. Property Binding in Angular 8
	Event Binding in Angular 8
	Approach:
	app.component.html
	app.component.ts
	Output:
	Syntax:
	Example 1: app.component.html:

	b. Two way Data Binding using ngmodel
	Syntax:
	app.component.ts

	Angular Directives

	5. Fetch Data from a Service (1)
	What is the Need for Angular Services?
	What Are Angular Services?
	Features of Angular Services

	Fetch data from service Example:-
	6. Submit data to service:-
	Defination:-
	Example2:-
	Example 3:-
	Step7:Profile.component.html
	Step8:Profile.component.ts
	Defination:-
	app.component.html:-
	app.component.ts:-
	Output:-
	Promises
	Observables
	What is Routing in AngularJS?
	Example:-

	Your First Node API
	Hello Node.js
	A Rich Module Ecosystem
	When To Use Node.js
	When Node.js May Not Be The Best Choice
	Front-end Vs. Back-end JavaScript
	Diving In: Your First Node.js API
	Serving JSON
	Basic Routing
	Dynamic Responses
	File Serving
	Express
	Real-Time Chat
	Building the App

	Wrap Up
	Challenges

	Async
	Callbacks
	Async in Series and Parallel
	Creating A Function
	Wrapping Up

	Promises
	Real World Promises
	Creating A Function
	Wrapping Up

	Async & Await
	Real World Async/Await
	Creating Async/Await Functions
	Wrapping Up

	Event Emitters
	Event Emitters: Getting Started

	Event Emitters: Going Further
	Event Emitters: Creating Custom Emitters
	Event Emitters: Wrapping Up

	Streams
	Composing Streams
	Real World Transform Streams
	Steams: Wrapping Up

	Async Final Words
	1. Install MongoDB
	3. Query and Projection
	1. Data
	5. Features of MongoDB

	Introduction:-
	2. Database:-
	1. Document-Based Database:

	3. Column Oriented Databases:
	4. Graph-Based databases:
	4. What is MongoDB?
	Why Use MongoDB?
	5. Features of MongoDB –
	Advantages of MongoDB :
	Disadvantages of MongoDB :
	6. How MongoDB works ?
	MongoDB work in two layers –
	 Application Layer and

	Getting Started
	7. Database, Collection and Documents:-
	Database
	Collection
	Document:-
	Consider the below example that shows a sample database stored in both Relational and Document Database
	How mongoDB is different from RDBMS ?

	1. Install MongoDB
	 There are 3 ways to install and use MongoDB
	1. Let’s install MongoDB on our machines(Windows)
	Install MongoDB on Windows using MSI Requirements to Install MongoDB on Windows
	 Windows Server 2022
	 Windows 11
	mongod
	mongod (1)
	Run mongo Shell
	2. MongoDB – Visual Studio Extension
	Fig.1. MongoDB – Visual Studio Extension
	Definition:-
	 Advantages Of Data Modelling
	Different Types of Data Models
	1. Conceptual data model
	2. Logical data model
	3. Physical data model

	 Data Model Design (or) Types
	1. Embedded Data Model
	2. Normalized Data Model (or) Reference Data Model:
	Considerations while designing Schema in MongoDB
	Example

	 Connect MongoDB:-
	 CURD Operation:-
	Creating and drop database:-
	Ex:-
	Read:-
	Delete:-

	3. Query and Projection
	MongoDB Query Operators
	Syntax:
	Example:
	1. Comparison Operators

	2. $gt
	3.$gte
	4. $in
	5. $lt
	6. $lte
	7. $ne
	8. $nin

	2. MongoDB Logical Operator
	Logical Operators

	3.Array Operator
	4.MongoDB Evaluation Operator
	db.books.createIndex({bio:"text"})

	5. Element Operators
	MongoDB Element Operator
	7. Geospatial Operators
	8. Comment Operators
	Examples:
	Displaying the names of the employees –
	Displaying the name and the department of the employees without the _id field

	MongoDB Projection Operator

	4. Aggregation Pipeline
	a. What is Aggregation in MongoDB?
	b. MongoDB aggregate pipeline syntax
	c. Single-purpose aggregation
	d. How to use MongoDB to Aggregate Data?
	Example:
	f. Aggregation Pipeline Method
	g. How Fast is MongoDB Aggregation?
	Prerequisites:
	Project Structure:

	NodeJS and MongoDB Connection
	Create a Collection in MongoDb using Node Js
	Insert a Single Document
	Insert Many Document
	Handling Insertion Results
	Read Documents from the collection
	Closing the Connection

